1. bookVolume 22 (2022): Issue 1 (January 2022)
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Association of SNPs in AKIRIN2, TTN, EDG1 and MYBPC1 Genes with Growth and Carcass Traits in Qinchuan Cattle

Published Online: 04 Feb 2022
Volume & Issue: Volume 22 (2022) - Issue 1 (January 2022)
Page range: 121 - 139
Received: 21 Oct 2020
Accepted: 15 Apr 2021
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English

Andersson L. (2001). Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet., 2: 130–138.Search in Google Scholar

Andersson L., Georges M. (2004). Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet., 5: 202–212.Search in Google Scholar

Boichard D., Grohs C., Bourgeois F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y., Boscher M.Y., Levéziel H. (2003). Detection of genes influencing economic traits in three French dairy cattle breeds. Genet. Sel. Evol., 35: 77–101.Search in Google Scholar

Casas E., Stone R.T., Keele J.W., Shackelford S.D., Kappes S.M., Koohmaraie M. (2001). A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J. Anim. Sci., 79: 854–860.Search in Google Scholar

Casas E., Shackelford S.D., Keele J.W., Koohmaraie M., Smith T.P.L., Stone R.T. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci., 81: 2976–2983.Search in Google Scholar

Chen Z., Zhao T.J., Li J., Gao Y.S., Meng F.G., Yan Y.B., Zhou H.M. (2011). Slow skeletal muscle myosin-binding protein-C (MYBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem. J., 436: 437–445.Search in Google Scholar

China National Commissionof Animal Genetic Resources(CNCAGR). (2001). Animal Genetic Resources in China: bovine. Beijing, China, China Agriculture Press, 15–20 pp.Search in Google Scholar

Felius M. (1995). Cattle breeds: An encyclopedia.Search in Google Scholar

Gabriel S., Ziaugra L., Tabbaa D. (2009). SNP genotyping using the sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet., John Wiley & Sons, Inc.10.1002/0471142905.hg0212s6019170031Search in Google Scholar

Galindo R.C., Doncel-Perez E., Zivkovic Z., Naranjo V., Gortazar C., Mangold A.J., Martin-Hernando M.P., Kocan K.M., dela Fuente J. (2009). Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol., 33: 612–617.Search in Google Scholar

Goto A., Matsushita K., Gesellchen V., El Chamy L., Kuttenkeuler D., Takeuchi O., Hoffmann J.A., Akira S., Boutros M., Reichhart J.M. (2008). Akirins are highly conserved nuclear proteins required for NF-kappa B-dependent gene expression in drosophila and mice. Nature Immunol., 9: 97–104.Search in Google Scholar

Han S.H., Cho I.C., Ko M.S., Kim E.Y., Oh H.S. (2011). A promoter polymorphism of MSTN g.-371T>A and its associations with carcass traits in Korean cattle. Mol. Biol. Rep., 39: 3767–3772.Search in Google Scholar

Itoh-Satoh M., Hayashi T., Nishi H., Koga Y., Arimura T., Koyanagi T., Takahashi M., Hohda S., Ueda K., Nouchi T., Hiroe M., Marumo F., Imaizumi T., Yasunami M., Kimura A. (2002). Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun., 291: 385–393.Search in Google Scholar

Kim H., Lee S.K., Hong M.W., Park S.R., Lee Y.S., Kim J.W., Lee H.K., Jeong D.K., Song Y.H., Lee S.J. (2013). Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle. Anim. Genet., 44: 750–753.Search in Google Scholar

Liu Y., Wada R., Yamashita T., Mi Y., Deng C.X., Hobson J.P., Rosenfeldt H.M., Nava V.E., Chae S.S., Lee M.J., Liu C.H., Hla T., Spiegel S., Proia R.L. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106: 951–961.Search in Google Scholar

Mannen H., Tsuji S., Loftus R.T., Bradley D.G. (1998). Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics, 150: 1169–1175.Search in Google Scholar

Mannen H., Kohno.M., Nagata Y., Tsuji S., Amano T. (2004). Independent mitochondrial origin and historical genetic differentiation of north eastern Asian cattle. Mol. Phylogenet. Evol., 32: 539–544.Search in Google Scholar

Mateescu R.G., Garrick D.J., Reecy J.M. (2017). Network analysis reveals putative genes affecting meat quality in Angus cattle. Front. Genet., 8: 171.Search in Google Scholar

Mc Clure M.C., Morsci N.S., Schnabel R.D., Kim J.W., Yao P., Rolf M.M., Mc Kay S.D., Gregg S.J., Chapple R.H., Northcutt S.L., Taylor J.F. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet., 41: 597–607.Search in Google Scholar

Mukai F., Tsuji S., Fukazawa K., Ohtagaki S., Nambu Y. (1989). History and population structure of a closed strain of Japanese Black cattle. J. Anim. Breed. Genet., 106: 254–264.Search in Google Scholar

Namikawa T. (1980). Genetic aspects of domestication and phylogeny in cattle. Jap. J. Zootech. Sci., 51: 235–246.Search in Google Scholar

National Academies of Sciences, Engineering, and Medicine (2016). Nutrient requirements of beef cattle, 8th rev. ed. Washington D.C, USA, The National Academies Press.Search in Google Scholar

Nei M., Roychoudhury A.K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics, 76: 379–390.Search in Google Scholar

Ogawa Y., Daigo M., Amasaki H. (1989). Craniometrical estimation of the native Japanese Mishima cattle, using multivariate analysis. Anat. Anz., 168: 197–202.Search in Google Scholar

Peters S.O., Kizilkaya K., Garrick D.J., Fernando R.L., Reecy J.M., Weaber R.L., Silver G.A., Thomas M.G. (2012). Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J. Anim. Sci., 90: 3398–3409.Search in Google Scholar

Raza S., Khan R., Abdelnour S.A., Abd E.M., Khafaga A.F., Taha A., Ohran H., Mei C., Schreurs N.M., Zan L. (2019). Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes (Basel), 10: 717.Search in Google Scholar

Raza S., Khan S., Amjadi M., Abdelnour S.A., Ohran H., Alanazi K.M., Abd E.M., Taha A.E., Khan R., Gong C., Schreurs N.M., Zhao C., Wei D., Zan L. (2020 a). Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch. Biochem. Biophys., 694: 108543.10.1016/j.abb.2020.10854332798459Search in Google Scholar

Raza S., Liu G.Y., Zhou L., Gui L.S., Khan R., Jinmeng Y., Chugang M., Schreurs N.M., Ji R., Zan L. (2020 b). Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene, 758: 144957.10.1016/j.gene.2020.14495732683081Search in Google Scholar

Raza S., Khan R., Schreurs N.M., Guo H., Gui L.S., Mei C., Zan L. (2020 c). Expression of the bovine KLF6 gene polymorphisms and their association with carcass and body measures in Qinchuan cattle (Bos taurus). Genomics, 112: 423–431.10.1016/j.ygeno.2019.03.00530880114Search in Google Scholar

Raza A., Shijun L., Khan R., Schreurs N.M., Manzari Z., Abd El-Aziz A.H., Ullah I., Kaster N., Shah M.A., Zan L. (2020 d). Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle. Genome, 63: 483–492.10.1139/gen-2019-018432615043Search in Google Scholar

Sasaki Y., Nagai K., Nagata Y., Doronbekov K., Nishimura S., Yoshioka S., Fujita T., Shiga K., Miyake T., Taniguchi Y., Yamada T. (2006 a). Exploration of genes showing intramuscular fat deposition-associated expression changes in musculus longissimus muscle. Anim. Genet., 37: 40–46.10.1111/j.1365-2052.2005.01380.x16441294Search in Google Scholar

Sasaki Y., Miyake T., Gaillard C., Oguni T., Ohtagaki S. (2006 b). Comparison of genetic gains per year for carcass traits among breeding programs in the Japanese Brown and the Japanese Black cattle. J. Anim. Sci., 84: 317–323.10.2527/2006.842317x16424259Search in Google Scholar

Sasaki S., Yamada T., Sukegawa S., Miyake T., Fujita T., Morita M., Ohta T., Takahagi Y., Murakami H., Morimatsu F., Sasaki Y. (2009). Association of a single nucleotide polymorphism in akirin 2 gene with marbling in Japanese Black beef cattle. BMC Res. Notes, 2: 131.Search in Google Scholar

Seung S.Y., Ji Y.S., Seon O.W., Hyung W.J., Keun C.K., Dong S.S. (2004). Genetic relationship of Korean cattle (Hanwoo) based on nucleotide variation of mitochondrial D-loop region. Korean J. Genet., 26: 297–307.Search in Google Scholar

Sukegawa S., Miyake T., Takahagi Y., Murakami H., Morimatsu F., Yamada T., Sasaki Y. (2010). Replicated association of the single nucleotide polymorphism in EDG1 with marbling in three general populations of Japanese Black beef cattle. BMC Res. Notes, 3: 66.Search in Google Scholar

Takasuga A., Watanabe T., Mizoguchi Y., Hirano T., Ihara N., Takano A., Yokouchi K., Fujikawa A., Chiba K., Kobayashi N., Tatsuda K., Oe T., Furukawa-Kuroiwa M., Nishimura-Abe A., Fujita T., Inoue K., Mizoshita K., Ogino A., Sugimoto Y. (2007). Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm. Genome, 18: 125–136.Search in Google Scholar

Tong B., Sasaki S., Muramatsu Y., Ohta T., Kose H., Yamashiro H., Fujita T., Yamada T. (2014 a). Association of a single-nucleotide polymorphism in myosin-binding protein C, slow-type (MYBPC1) gene with marbling in Japanese Black beef cattle. Anim. Genet., 45: 611–612.10.1111/age.1217224810268Search in Google Scholar

Tong B., Sasaki S., Muramatsu Y., Ohta T., Kose H., Fujita T., Yamada T. (2014 b). The G allele at the g.70014208A>G in the MYBPC1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not selected for marbling. J. Genet., 93: 231–233.Search in Google Scholar

Tong B., Xing Y.P., Muramatsu Y., Ohta T., Kose H., Zhou H.M., Yamada T. (2015). Association of expression levels in skeletal muscle and a SNP in the MYBPC1 gene with growthrelated trait in Japanese Black beef cattle. J. Genet., 94: 135–137.Search in Google Scholar

Tong B., Zhang L., Li G.P. (2017). Progress in the molecular and genetic modification breeding of beef cattle in China. Hereditas, 39: 984–1015.Search in Google Scholar

Wang L., Raza S., Gui L., Li S., Liu X., Yang X., Wang S., Zan L., Zhao C. (2020). Associations between UASMS2 polymorphism in leptin gene and growth, carcass and meat quality traits of cattle: a meta-analysis. Anim. Biotechnol., 17: 1–10.Search in Google Scholar

Watanabe N., Yamada T., Yoshioka S., Iton M., Satoh Y., Furuta M., Komatsu S., Sumio Y., Fujita T., Sasaki Y. (2010). The T allele at the g.1471620G>T in the EDG1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not selected for marbling. Anim. Sci. J., 81: 142–144.Search in Google Scholar

Watanabe N., Satoh Y., Fujita T., Ohta T., Kose H., Muramatsu Y., Yamamoto T., Yamada T. (2011). Distribution of allele frequencies at TTN g.231054C>T, RPL27A g.3109537C>T and AKIRIN2 c.188G>a between Japanese Black and four other cattle breeds with differing historical selection for marbling. BMC Res. Notes, 4: 10.Search in Google Scholar

Wei D.W., Raza S.H.A., Zhang J.P., Gui L.S., Rahman S.U., Khan R., Hosseini S., Kaleri H., Zan L.S. (2018). Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene, 656: 9–16.Search in Google Scholar

Wu S., Wang Y., Ning Y., Guo H., Wang X., Zhang L., Khan R., Cheng G., Wang H., Zan L. (2018). Genetic variants in STAT3 promoter regions and their application in molecular breeding for body size traits in Qinchuan cattle. Int. J. Mol. Sci., 19: 1035.Search in Google Scholar

Yamada T. (2014). Genetic dissection of marbling trait through integration of mapping and expression profiling. Anim. Sci. J., 85: 349–355.Search in Google Scholar

Yamada T., Sasaki S., Sukegawa S., Yoshioka S., Takahagi Y., Morita M., Murakami H., Morimatsu F., Fujita T., Miyake T., Sasaki Y. (2009 a). Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle. BMC Res. Notes, 2: 78.10.1186/1756-0500-2-78268386319419586Search in Google Scholar

Yamada T., Sasaki S., Sukegawa S., Miyake T., Fujita T., Kose H., Morita M., Takahagi Y., Murakami H., Morimatsu F., Sasaki Y. (2009 b). Novel SNP in 5′ flanking region of EDG1 associated with marbling in Japanese Black beef cattle. Anim. Sci. J., 80: 486–489.10.1111/j.1740-0929.2009.00665.x20163611Search in Google Scholar

Yamada T., Itoh M., Nishimura S., Taniguchi Y., Miyake T., Sasaki S., Yoshioka S., Fujita T., Shiga K., Morita M., Sasaki Y. (2009 c). Association of single nucleotide polymorphisms in the endothelial differentiation sphingolipid G-protein-coupled receptor 1 gene with marbling in Japanese Black beef cattle. Anim. Genet., 40: 209–216.10.1111/j.1365-2052.2008.01822.x19133939Search in Google Scholar

Yamada T., Sasaki S., Sukegawa S., Yoshioka S., Takahagi Y., Morita M., Murakami H., Morimatsu F., Fujita T., Miyake T., Sasaki Y. (2011). Possible association of single nucleotide polymorphism in titin gene with growth-related traits in Japanese Black beef cattle. J. Anim Vet. Adv., 10: 2603–2606.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo