[Andersson L. (2001). Genetic dissection of phenotypic diversity in farm animals. Nat. Rev. Genet., 2: 130–138.]Search in Google Scholar
[Andersson L., Georges M. (2004). Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet., 5: 202–212.]Search in Google Scholar
[Boichard D., Grohs C., Bourgeois F., Cerqueira F., Faugeras R., Neau A., Rupp R., Amigues Y., Boscher M.Y., Levéziel H. (2003). Detection of genes influencing economic traits in three French dairy cattle breeds. Genet. Sel. Evol., 35: 77–101.]Search in Google Scholar
[Casas E., Stone R.T., Keele J.W., Shackelford S.D., Kappes S.M., Koohmaraie M. (2001). A comprehensive search for quantitative trait loci affecting growth and carcass composition of cattle segregating alternative forms of the myostatin gene. J. Anim. Sci., 79: 854–860.]Search in Google Scholar
[Casas E., Shackelford S.D., Keele J.W., Koohmaraie M., Smith T.P.L., Stone R.T. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. J. Anim. Sci., 81: 2976–2983.]Search in Google Scholar
[Chen Z., Zhao T.J., Li J., Gao Y.S., Meng F.G., Yan Y.B., Zhou H.M. (2011). Slow skeletal muscle myosin-binding protein-C (MYBPC1) mediates recruitment of muscle-type creatine kinase (CK) to myosin. Biochem. J., 436: 437–445.]Search in Google Scholar
[China National Commissionof Animal Genetic Resources(CNCAGR). (2001). Animal Genetic Resources in China: bovine. Beijing, China, China Agriculture Press, 15–20 pp.]Search in Google Scholar
[Felius M. (1995). Cattle breeds: An encyclopedia.]Search in Google Scholar
[Gabriel S., Ziaugra L., Tabbaa D. (2009). SNP genotyping using the sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet., John Wiley & Sons, Inc.10.1002/0471142905.hg0212s6019170031]Search in Google Scholar
[Galindo R.C., Doncel-Perez E., Zivkovic Z., Naranjo V., Gortazar C., Mangold A.J., Martin-Hernando M.P., Kocan K.M., dela Fuente J. (2009). Tick subolesin is an ortholog of the akirins described in insects and vertebrates. Dev. Comp. Immunol., 33: 612–617.]Search in Google Scholar
[Goto A., Matsushita K., Gesellchen V., El Chamy L., Kuttenkeuler D., Takeuchi O., Hoffmann J.A., Akira S., Boutros M., Reichhart J.M. (2008). Akirins are highly conserved nuclear proteins required for NF-kappa B-dependent gene expression in drosophila and mice. Nature Immunol., 9: 97–104.]Search in Google Scholar
[Han S.H., Cho I.C., Ko M.S., Kim E.Y., Oh H.S. (2011). A promoter polymorphism of MSTN g.-371T>A and its associations with carcass traits in Korean cattle. Mol. Biol. Rep., 39: 3767–3772.]Search in Google Scholar
[Itoh-Satoh M., Hayashi T., Nishi H., Koga Y., Arimura T., Koyanagi T., Takahashi M., Hohda S., Ueda K., Nouchi T., Hiroe M., Marumo F., Imaizumi T., Yasunami M., Kimura A. (2002). Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem. Biophys. Res. Commun., 291: 385–393.]Search in Google Scholar
[Kim H., Lee S.K., Hong M.W., Park S.R., Lee Y.S., Kim J.W., Lee H.K., Jeong D.K., Song Y.H., Lee S.J. (2013). Association of a single nucleotide polymorphism in the akirin 2 gene with economically important traits in Korean native cattle. Anim. Genet., 44: 750–753.]Search in Google Scholar
[Liu Y., Wada R., Yamashita T., Mi Y., Deng C.X., Hobson J.P., Rosenfeldt H.M., Nava V.E., Chae S.S., Lee M.J., Liu C.H., Hla T., Spiegel S., Proia R.L. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106: 951–961.]Search in Google Scholar
[Mannen H., Tsuji S., Loftus R.T., Bradley D.G. (1998). Mitochondrial DNA variation and evolution of Japanese black cattle (Bos taurus). Genetics, 150: 1169–1175.]Search in Google Scholar
[Mannen H., Kohno.M., Nagata Y., Tsuji S., Amano T. (2004). Independent mitochondrial origin and historical genetic differentiation of north eastern Asian cattle. Mol. Phylogenet. Evol., 32: 539–544.]Search in Google Scholar
[Mateescu R.G., Garrick D.J., Reecy J.M. (2017). Network analysis reveals putative genes affecting meat quality in Angus cattle. Front. Genet., 8: 171.]Search in Google Scholar
[Mc Clure M.C., Morsci N.S., Schnabel R.D., Kim J.W., Yao P., Rolf M.M., Mc Kay S.D., Gregg S.J., Chapple R.H., Northcutt S.L., Taylor J.F. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet., 41: 597–607.]Search in Google Scholar
[Mukai F., Tsuji S., Fukazawa K., Ohtagaki S., Nambu Y. (1989). History and population structure of a closed strain of Japanese Black cattle. J. Anim. Breed. Genet., 106: 254–264.]Search in Google Scholar
[Namikawa T. (1980). Genetic aspects of domestication and phylogeny in cattle. Jap. J. Zootech. Sci., 51: 235–246.]Search in Google Scholar
[National Academies of Sciences, Engineering, and Medicine (2016). Nutrient requirements of beef cattle, 8th rev. ed. Washington D.C, USA, The National Academies Press.]Search in Google Scholar
[Nei M., Roychoudhury A.K. (1974). Sampling variances of heterozygosity and genetic distance. Genetics, 76: 379–390.]Search in Google Scholar
[Ogawa Y., Daigo M., Amasaki H. (1989). Craniometrical estimation of the native Japanese Mishima cattle, using multivariate analysis. Anat. Anz., 168: 197–202.]Search in Google Scholar
[Peters S.O., Kizilkaya K., Garrick D.J., Fernando R.L., Reecy J.M., Weaber R.L., Silver G.A., Thomas M.G. (2012). Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers. J. Anim. Sci., 90: 3398–3409.]Search in Google Scholar
[Raza S., Khan R., Abdelnour S.A., Abd E.M., Khafaga A.F., Taha A., Ohran H., Mei C., Schreurs N.M., Zan L. (2019). Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes (Basel), 10: 717.]Search in Google Scholar
[Raza S., Khan S., Amjadi M., Abdelnour S.A., Ohran H., Alanazi K.M., Abd E.M., Taha A.E., Khan R., Gong C., Schreurs N.M., Zhao C., Wei D., Zan L. (2020 a). Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch. Biochem. Biophys., 694: 108543.10.1016/j.abb.2020.10854332798459]Search in Google Scholar
[Raza S., Liu G.Y., Zhou L., Gui L.S., Khan R., Jinmeng Y., Chugang M., Schreurs N.M., Ji R., Zan L. (2020 b). Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene, 758: 144957.10.1016/j.gene.2020.14495732683081]Search in Google Scholar
[Raza S., Khan R., Schreurs N.M., Guo H., Gui L.S., Mei C., Zan L. (2020 c). Expression of the bovine KLF6 gene polymorphisms and their association with carcass and body measures in Qinchuan cattle (Bos taurus). Genomics, 112: 423–431.10.1016/j.ygeno.2019.03.00530880114]Search in Google Scholar
[Raza A., Shijun L., Khan R., Schreurs N.M., Manzari Z., Abd El-Aziz A.H., Ullah I., Kaster N., Shah M.A., Zan L. (2020 d). Polymorphism of the PLIN1 gene and its association with body measures and ultrasound carcass traits in Qinchuan beef cattle. Genome, 63: 483–492.10.1139/gen-2019-018432615043]Search in Google Scholar
[Sasaki Y., Nagai K., Nagata Y., Doronbekov K., Nishimura S., Yoshioka S., Fujita T., Shiga K., Miyake T., Taniguchi Y., Yamada T. (2006 a). Exploration of genes showing intramuscular fat deposition-associated expression changes in musculus longissimus muscle. Anim. Genet., 37: 40–46.10.1111/j.1365-2052.2005.01380.x16441294]Search in Google Scholar
[Sasaki Y., Miyake T., Gaillard C., Oguni T., Ohtagaki S. (2006 b). Comparison of genetic gains per year for carcass traits among breeding programs in the Japanese Brown and the Japanese Black cattle. J. Anim. Sci., 84: 317–323.10.2527/2006.842317x16424259]Search in Google Scholar
[Sasaki S., Yamada T., Sukegawa S., Miyake T., Fujita T., Morita M., Ohta T., Takahagi Y., Murakami H., Morimatsu F., Sasaki Y. (2009). Association of a single nucleotide polymorphism in akirin 2 gene with marbling in Japanese Black beef cattle. BMC Res. Notes, 2: 131.]Search in Google Scholar
[Seung S.Y., Ji Y.S., Seon O.W., Hyung W.J., Keun C.K., Dong S.S. (2004). Genetic relationship of Korean cattle (Hanwoo) based on nucleotide variation of mitochondrial D-loop region. Korean J. Genet., 26: 297–307.]Search in Google Scholar
[Sukegawa S., Miyake T., Takahagi Y., Murakami H., Morimatsu F., Yamada T., Sasaki Y. (2010). Replicated association of the single nucleotide polymorphism in EDG1 with marbling in three general populations of Japanese Black beef cattle. BMC Res. Notes, 3: 66.]Search in Google Scholar
[Takasuga A., Watanabe T., Mizoguchi Y., Hirano T., Ihara N., Takano A., Yokouchi K., Fujikawa A., Chiba K., Kobayashi N., Tatsuda K., Oe T., Furukawa-Kuroiwa M., Nishimura-Abe A., Fujita T., Inoue K., Mizoshita K., Ogino A., Sugimoto Y. (2007). Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mamm. Genome, 18: 125–136.]Search in Google Scholar
[Tong B., Sasaki S., Muramatsu Y., Ohta T., Kose H., Yamashiro H., Fujita T., Yamada T. (2014 a). Association of a single-nucleotide polymorphism in myosin-binding protein C, slow-type (MYBPC1) gene with marbling in Japanese Black beef cattle. Anim. Genet., 45: 611–612.10.1111/age.1217224810268]Search in Google Scholar
[Tong B., Sasaki S., Muramatsu Y., Ohta T., Kose H., Fujita T., Yamada T. (2014 b). The G allele at the g.70014208A>G in the MYBPC1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not selected for marbling. J. Genet., 93: 231–233.]Search in Google Scholar
[Tong B., Xing Y.P., Muramatsu Y., Ohta T., Kose H., Zhou H.M., Yamada T. (2015). Association of expression levels in skeletal muscle and a SNP in the MYBPC1 gene with growthrelated trait in Japanese Black beef cattle. J. Genet., 94: 135–137.]Search in Google Scholar
[Tong B., Zhang L., Li G.P. (2017). Progress in the molecular and genetic modification breeding of beef cattle in China. Hereditas, 39: 984–1015.]Search in Google Scholar
[Wang L., Raza S., Gui L., Li S., Liu X., Yang X., Wang S., Zan L., Zhao C. (2020). Associations between UASMS2 polymorphism in leptin gene and growth, carcass and meat quality traits of cattle: a meta-analysis. Anim. Biotechnol., 17: 1–10.]Search in Google Scholar
[Watanabe N., Yamada T., Yoshioka S., Iton M., Satoh Y., Furuta M., Komatsu S., Sumio Y., Fujita T., Sasaki Y. (2010). The T allele at the g.1471620G>T in the EDG1 gene associated with high marbling in Japanese Black cattle is at a low frequency in breeds not selected for marbling. Anim. Sci. J., 81: 142–144.]Search in Google Scholar
[Watanabe N., Satoh Y., Fujita T., Ohta T., Kose H., Muramatsu Y., Yamamoto T., Yamada T. (2011). Distribution of allele frequencies at TTN g.231054C>T, RPL27A g.3109537C>T and AKIRIN2 c.188G>a between Japanese Black and four other cattle breeds with differing historical selection for marbling. BMC Res. Notes, 4: 10.]Search in Google Scholar
[Wei D.W., Raza S.H.A., Zhang J.P., Gui L.S., Rahman S.U., Khan R., Hosseini S., Kaleri H., Zan L.S. (2018). Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene, 656: 9–16.]Search in Google Scholar
[Wu S., Wang Y., Ning Y., Guo H., Wang X., Zhang L., Khan R., Cheng G., Wang H., Zan L. (2018). Genetic variants in STAT3 promoter regions and their application in molecular breeding for body size traits in Qinchuan cattle. Int. J. Mol. Sci., 19: 1035.]Search in Google Scholar
[Yamada T. (2014). Genetic dissection of marbling trait through integration of mapping and expression profiling. Anim. Sci. J., 85: 349–355.]Search in Google Scholar
[Yamada T., Sasaki S., Sukegawa S., Yoshioka S., Takahagi Y., Morita M., Murakami H., Morimatsu F., Fujita T., Miyake T., Sasaki Y. (2009 a). Association of a single nucleotide polymorphism in titin gene with marbling in Japanese Black beef cattle. BMC Res. Notes, 2: 78.10.1186/1756-0500-2-78268386319419586]Search in Google Scholar
[Yamada T., Sasaki S., Sukegawa S., Miyake T., Fujita T., Kose H., Morita M., Takahagi Y., Murakami H., Morimatsu F., Sasaki Y. (2009 b). Novel SNP in 5′ flanking region of EDG1 associated with marbling in Japanese Black beef cattle. Anim. Sci. J., 80: 486–489.10.1111/j.1740-0929.2009.00665.x20163611]Search in Google Scholar
[Yamada T., Itoh M., Nishimura S., Taniguchi Y., Miyake T., Sasaki S., Yoshioka S., Fujita T., Shiga K., Morita M., Sasaki Y. (2009 c). Association of single nucleotide polymorphisms in the endothelial differentiation sphingolipid G-protein-coupled receptor 1 gene with marbling in Japanese Black beef cattle. Anim. Genet., 40: 209–216.10.1111/j.1365-2052.2008.01822.x19133939]Search in Google Scholar
[Yamada T., Sasaki S., Sukegawa S., Yoshioka S., Takahagi Y., Morita M., Murakami H., Morimatsu F., Fujita T., Miyake T., Sasaki Y. (2011). Possible association of single nucleotide polymorphism in titin gene with growth-related traits in Japanese Black beef cattle. J. Anim Vet. Adv., 10: 2603–2606.]Search in Google Scholar