[Agenäs S., Lundström I., Holtenius K. (2019). The effect of 17β-estradiol on lactose in plasma and urine in dairy cows in late lactation. J. Dairy Res., 86: 188–192.]Search in Google Scholar
[Al-Oudat B.A., Alqudah M.A., Audat S.A., Al-Balas Q.Q., El-Elimat T., Has-san M.A., Frhat I.N., Azaizeh M.M. (2019). Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des. Devel. Ther., 13: 423–433.]Search in Google Scholar
[Bertoni G., Trevisi E., Cappelli F.P., Cappa V. (1994). Variation in blood parameters with mastitis of different severity in dairy cows. Proc. 18th World Buiatrics Congress: 26th Congress of the Italian Association of Buiatrics, 2: 1427–1430.]Search in Google Scholar
[Burmańczuk A., Hola P., Milczak A., Piech T., Kowalski C., Wojciechowska B., Grabowski T. (2018). Quercetin decrease somatic cells count in mastitis of dairy cows. Res. Vet. Sci., 117: 255–259.]Search in Google Scholar
[Cui L., Wang H., Ding Y., Li J., Li Ji. (2019). Changes in the blood routine, biochemical indexes and the pro-inflammatory cytokine expressions of peripheral leukocytes in postpartum dairy cows with metritis. BMC Vet. Res., 15: 157.]Search in Google Scholar
[Ding Z., Sun G., Zhu Z. (2018). Hesperidin attenuates influenza A virus (H1N1) induced lung injury in rats through its anti-inflammatory effect. Antivir. Ther., 23: 611–615.]Search in Google Scholar
[European Food Safety Authority (2017). Scientific Opinion of Flavouring Group Evaluation 410 (FGE.410): 4’,5,7-trihydroxyflavanone from chemical group 25 (phenol derivatives containing ringalkyl, ring-alkoxy, and side-chains with an oxygenated functional group). EFSA Journal, 15: 1–29.]Search in Google Scholar
[Filho J.C.C, Sarria A.L.F., Becceneri A.B., Fuzer A.M., Batalhao J.R., Paranhosda Silva C.M., Carlos R.M., Vieira P.C., Fernandes J.B., Cominetti M.R. (2014). Copper (II) and 2,2′-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One 9, e107058.]Search in Google Scholar
[Food and Drug Administration (2019). Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products. Guidance for Industry, pp. 1–42.]Search in Google Scholar
[Gao X., Guo M., Zhang Z., Shen P., Yang Z., Zhang N. (2017). Baicalin promotes the bacteriostatic activity of lysozyme on S. aureus in mammary glands and neutrophilic granulocytes in mice. Oncotarget, 8: 19894–19901.]Search in Google Scholar
[Garba B., Habibullah S.A., Saidu B., Suleiman N. (2019). Effect of mastitis on some hematological and biochemical parameters of Red Sokoto goats. Vet. World, 12: 572–577.]Search in Google Scholar
[Gbylik-Sikorska M., Gajda A., Burmańczuk A., Grabowski, T., Posyniak A. (2019). Development of a UHPLC-MS/MS method for the determination of quercetin in milk and its application to a pharmacokinetic study. J. Vet. Res., 63: 87–91.]Search in Google Scholar
[He X., Wei Z., Zhou E., Chen L., Kou J., Wang J., Yang Z. (2015). Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int. Immunopharmacol., 28: 470–476.]Search in Google Scholar
[Helle J., Kraker K., Bader M.I., Keiler A.M., Zierau O., Vollmer G., Welsh J., Kretzschmar G. (2014). Assessment of the proliferative capacity of the flavanones 8-prenylnaringenin, 6-(1.1-dimethylallyl)naringenin and naringenin in MCF-7 cells and the rat mammary gland. Mol. Cell. Endocrinol., 392: 125–135.]Search in Google Scholar
[Hwang S.H., Kim H.Y., Zuo G., Wang Z., Lee J.Y., Lim S.S. (2018). Anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. Molecules, 23: 1752.]Search in Google Scholar
[Lee C.J., Wilson L., Jordan M.A., Nguyen V., Tang J., Smiyun G. (2010). Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res., 24 (suppl. 1): S15–S19.]Search in Google Scholar
[Lee J.Y., Park W. (2015). Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Biotechnol. Bioprocess Eng., 20: 1026–1034.]Search in Google Scholar
[Li C., Schluesener H. (2017). Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 57: 613–631.]Search in Google Scholar
[Medina-Estrada I., López-Meza J.E., Ochoa-Zarzosa A. (2016). Anti-inflammatory and antimicrobial effects of estradiol in bovine mammary epithelial cells during Staphylococcus aureus internalization. Mediators Inflamm., 2016: 6120509.]Search in Google Scholar
[Miklasińska-Majdanik M., Kępa M., Wojtyczka R.D., Idzik D., Wąsik T.J. (2018). Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health, 15: 2321.]Search in Google Scholar
[Oguido A.P., Hohmann M.S., Pinho-Ribeiro F.A., Crespigio J., Domiciano T.P., Verri Jr.W.A., Casella A.M. (2017). Naringenin eye drops inhibit corneal neovascularization by anti-inflammatory and antioxidant mechanisms. Invest. Ophthalmol. Vis. Sci., 58: 5764–5776.]Search in Google Scholar
[Parhiz H., Roohbakhsh A., Soltani F., Rezaee R., Iranshahi M. (2015). Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 29: 323–331.]Search in Google Scholar
[Perruchot M.-H., Gondret F., Robert F., Dupuis E., Quesnel H., Dessauge F. (2019). Effect of the flavonoid baicalin on the proliferative capacity of bovine mammary cells and their ability to regulate oxidative stress. Peer J., 7: e6565.]Search in Google Scholar
[Pinho-Ribeiro F.A., Zarpelon A.C., Fattori V., Manchope M.F., Mizokami S.S., Casagrande R., Verri Jr.W.A. (2016). Naringenin reduces inflammatory pain in mice. Neuropharmacology, 105: 508–519.]Search in Google Scholar
[Ren Z., Shen J., Mei X., Dong H., Li J., Yu H. (2019). Hesperidin inhibits the epithelial to mesenchymal transition induced by transforming growth factor-β1 in A549 cells through Smad signaling in the cytoplasm. Braz. J. Pharm. Sci., 55: doi:10.1590/s2175-97902019000218172.10.1590/s2175-97902019000218172]Search in Google Scholar
[Sarvesha K., Satyanarayana M.L., Narayanaswamy H.D., Rao S., Yathiraj S., Isloor S., Mukartal S.Y., Singh S.V., Anuradha M.E. (2017). Haemato-biochemical profile and milk leukocyte count in subclinical and clinical mastitis affected crossbred cattle. J. Exp. Biol. Agric. Sci., 5: 001–006.]Search in Google Scholar
[Snapinn S.M., Jiang Q. (2007). Responder analyses and the assessment of a clinically relevant treatment effect. Trials, 8: 31.]Search in Google Scholar
[Stevens M., Piepers S., Supre K., Dewulf J., De Vliegher S. (2016). Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci., 99: 2118–2130.]Search in Google Scholar
[Stevens M., Piepers S., De Vliegher S. (2019). The effect of mastitis management input and implementation of mastitis management on udder health, milk quality, and antimicrobial consumption in dairy herds. J. Dairy Sci., 102: 2401–2415.]Search in Google Scholar
[Tejada S., Pinya S., Martorell M., Capo X., Tur J., Pons A., Sureda A. (2018). Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem., 25: 4929–4945.]Search in Google Scholar
[Wu T., He M., Zang X., Zhou Y., Qiu T., Pan S., Xu X. (2013). A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta, 1828: 2751–2756.]Search in Google Scholar
[Yart L., Finot L., Lollivier V., Dessauge F. (2013). Oestradiol enhances apoptosis in bovine mammary epithelial cells in vitro. J. Dairy Res., 80: 113–121.]Search in Google Scholar
[Zaki M.S., El-Battrawy N., Mostafa S.O., Fawzi O.M., Awad I. (2010). Some biochemical studies on Friesian suffering from subclinical mastitis. Nat. Sci., 8: 143–146.]Search in Google Scholar
[Zhang F., Dong W., Zeng W., Zhang L., Zhang C., Qiu T., Wang L., Yin X., Zhang Ch., Liang W. (2016). Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res., 18: 38.]Search in Google Scholar
[Zhao Z., Jin G., Ge Y., Guo Z. (2019). Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology, 27: 1021–1036.]Search in Google Scholar
[Zierau O., Gester S., Schwab P., Metz P., Kolba S., Wulf M., Vollmer G. (2002). Estrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin. Planta Med., 68: 449–451.]Search in Google Scholar