Research on the optimisation of music education curriculum content and implementation path based on big data analysis
and
Feb 05, 2025
About this article
Published Online: Feb 05, 2025
Received: Sep 27, 2024
Accepted: Jan 06, 2025
DOI: https://doi.org/10.2478/amns-2025-0067
Keywords
© 2025 Menghan Li et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Results of recommended performance indicators for each model
Model | Pre@20 | Recall@20 | NDCG@20 | MRR | AUC |
---|---|---|---|---|---|
MF | 0.11521 | 0.10156 | 0.02516 | 0.01408 | 0.50423 |
HERec | 0.14722 | 0.13489 | 0.05069 | 0.03023 | 0.62355 |
NGCF | 0.18836 | 0.15266 | 0.58996 | 0.04815 | 0.65882 |
ACKRec | 0.19156 | 0.16189 | 0.06251 | 0.05047 | 0.67321 |
MOOCIR | 0.19554 | 0.16205 | 0.06322 | 0.06381 | 0.68011 |
HFCNqh | 0.02131 | 0.18732 | 0.07182 | 0.06852 | 0.72342 |
HFCNqk | 0.19983 | 0.17956 | 0.07134 | 0.06433 | 0.69834 |
HFCNqb | 0.02015 | 0.18090 | 0.07560 | 0.06385 | 0.70705 |
Node2vec | |||||
Improvement (%) | 10.23% | 5.96% | 14.89% | 9.05% | 4.14% |
Partitioning results based on learner interaction data
Data set | Groups | Number of users | Number of courses | Users-courses | Density (%) |
---|---|---|---|---|---|
MOOC music course content recommended data set | (0, 5] | 25510 | 596 | 82694 | 0.61% |
(5, 15] | 4583 | 575 | 34566 | 1.55% | |
(15, 30] | 284 | 432 | 4315 | 4.56% | |
(30, 100] | 42 | 401 | 1675 | 11.05% |