Research on the optimisation of music education curriculum content and implementation path based on big data analysis
oraz
05 lut 2025
O artykule
Data publikacji: 05 lut 2025
Otrzymano: 27 wrz 2024
Przyjęty: 06 sty 2025
DOI: https://doi.org/10.2478/amns-2025-0067
Słowa kluczowe
© 2025 Menghan Li et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Results of recommended performance indicators for each model
Model | Pre@20 | Recall@20 | NDCG@20 | MRR | AUC |
---|---|---|---|---|---|
MF | 0.11521 | 0.10156 | 0.02516 | 0.01408 | 0.50423 |
HERec | 0.14722 | 0.13489 | 0.05069 | 0.03023 | 0.62355 |
NGCF | 0.18836 | 0.15266 | 0.58996 | 0.04815 | 0.65882 |
ACKRec | 0.19156 | 0.16189 | 0.06251 | 0.05047 | 0.67321 |
MOOCIR | 0.19554 | 0.16205 | 0.06322 | 0.06381 | 0.68011 |
HFCNqh | 0.02131 | 0.18732 | 0.07182 | 0.06852 | 0.72342 |
HFCNqk | 0.19983 | 0.17956 | 0.07134 | 0.06433 | 0.69834 |
HFCNqb | 0.02015 | 0.18090 | 0.07560 | 0.06385 | 0.70705 |
Node2vec | |||||
Improvement (%) | 10.23% | 5.96% | 14.89% | 9.05% | 4.14% |
Partitioning results based on learner interaction data
Data set | Groups | Number of users | Number of courses | Users-courses | Density (%) |
---|---|---|---|---|---|
MOOC music course content recommended data set | (0, 5] | 25510 | 596 | 82694 | 0.61% |
(5, 15] | 4583 | 575 | 34566 | 1.55% | |
(15, 30] | 284 | 432 | 4315 | 4.56% | |
(30, 100] | 42 | 401 | 1675 | 11.05% |