Research on the optimisation of music education curriculum content and implementation path based on big data analysis
et
05 févr. 2025
À propos de cet article
Publié en ligne: 05 févr. 2025
Reçu: 27 sept. 2024
Accepté: 06 janv. 2025
DOI: https://doi.org/10.2478/amns-2025-0067
Mots clés
© 2025 Menghan Li et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Results of recommended performance indicators for each model
Model | Pre@20 | Recall@20 | NDCG@20 | MRR | AUC |
---|---|---|---|---|---|
MF | 0.11521 | 0.10156 | 0.02516 | 0.01408 | 0.50423 |
HERec | 0.14722 | 0.13489 | 0.05069 | 0.03023 | 0.62355 |
NGCF | 0.18836 | 0.15266 | 0.58996 | 0.04815 | 0.65882 |
ACKRec | 0.19156 | 0.16189 | 0.06251 | 0.05047 | 0.67321 |
MOOCIR | 0.19554 | 0.16205 | 0.06322 | 0.06381 | 0.68011 |
HFCNqh | 0.02131 | 0.18732 | 0.07182 | 0.06852 | 0.72342 |
HFCNqk | 0.19983 | 0.17956 | 0.07134 | 0.06433 | 0.69834 |
HFCNqb | 0.02015 | 0.18090 | 0.07560 | 0.06385 | 0.70705 |
Node2vec | |||||
Improvement (%) | 10.23% | 5.96% | 14.89% | 9.05% | 4.14% |
Partitioning results based on learner interaction data
Data set | Groups | Number of users | Number of courses | Users-courses | Density (%) |
---|---|---|---|---|---|
MOOC music course content recommended data set | (0, 5] | 25510 | 596 | 82694 | 0.61% |
(5, 15] | 4583 | 575 | 34566 | 1.55% | |
(15, 30] | 284 | 432 | 4315 | 4.56% | |
(30, 100] | 42 | 401 | 1675 | 11.05% |