1. bookVolume 14 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

Stationary phase type and temperature effect on HPLC separation of lactic acid enantiomers

Published Online: 10 Sep 2021
Page range: 60 - 65
Journal Details
License
Format
Journal
eISSN
1339-3065
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

Lactic acid is a biologically important organic acid existing in two enantiomeric forms which are differently metabolized in the human body. In this paper, direct chiral separation of lactic acid by high performance liquid chromatography is presented. Five chiral stationary phases based on macrocyclic antibiotics were used for enantioseparation and chromatographic parameters, such as retention factors, resolution and selectivity factors, were determined under different column temperatures ranging from 5 to 45 °C. Optical isomers of lactic acid were efficiently separated using chiral stationary phases based on teicoplanin (RS = 1.9 ) and ristocetin (RS = 1.7 ) in reversed-phase separation mode at the column temperature of 25 °C.

Keywords

Abd Alsaheb RA, Aladdin A, Othman NZ, Abd Malek R, Leng OM, Aziz R, Enshasy HA (2015) J. Chem. Pharm. Res. 7(10): 729—735. Search in Google Scholar

Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen JR (1994) Anal. Chem. 66: 1473—1484. Search in Google Scholar

Borshchevskaya LN, Gordeeva TL, Kalinina AN, Sineokii SP (2016) J. Anal. Chem. 71(8): 755—758.10.1134/S1061934816080037 Search in Google Scholar

D’Acquarica I, Gasparrini F, Misiti D, Pierini M, Villani C (2008) Adv. Chromatogr. (N.Y.) 46: 109—173. Search in Google Scholar

Ding X, Lin S, Weng H, Liang J (2018) J. Sep. Sci. 41(12): 2576—2584.10.1002/jssc.201701555 Search in Google Scholar

Dutra EA, Santoro MIRM, Micke GA, Tavares MFM, Kedor-Hackmann ERM (2006) J. Pharm. Biomed. Anal. 40(2): 242—248.10.1016/j.jpba.2005.07.009 Search in Google Scholar

Feng S, Xiang S, Bian X, Li G (2020) Microch. J. 157: 105049. Search in Google Scholar

Henry H, Marmy Conus N, Steenhout P, Béguin A, Boulat O (2012) Biomed. Chromatogr. 26(4): 425—428. Search in Google Scholar

Huang WS, Lin CC, Huang MC, Wen KC (2002) J. Food Drug Anal. 10(2): 95—100. Search in Google Scholar

Hušek P, Šimek P, Matucha P (2003) Chromatographia 58: 623—630.10.1515/zna-2003-1106 Search in Google Scholar

Ilisz I, Pataj Z, Aranyi A, Péter A (2012) Sep. Purif. Rev. 41(3): 207—249.10.1080/15422119.2011.596253 Search in Google Scholar

Martinez FAC, Balciunas EM, Salgado JM, Gonzalez JMD, Converti A, de Souza Oliveira RP (2013) Trends Food Sci. Technol. 30(1): 70—83. Search in Google Scholar

Mohr S, Sepic G, Schmid MG (2012) Croat. Chem. Acta 85(1): 33—36. Search in Google Scholar

Nicoletti I, Corradini C, Cogliandro E, Cavazza A (1999) Int. J Cosmet. Sci. 21(4): 265—274.10.1046/j.1467-2494.1999.196577.x Search in Google Scholar

Norton D, Crow B, Bishop M, Kovalcik K, George J, Bralley JA (2007) J. Chromatogr. B 850(1-2): 190—198.10.1016/j.jchromb.2006.11.020 Search in Google Scholar

Okubo S, Mashige F, Omori M, Hashimoto Y, Nakahara K, Kanayawa H, Matsushima Y (2000) Biomed. Chromatogr. 14(7): 474—477. Search in Google Scholar

Rodrigues C, Vandenberghe LPS, Woiciechowski AL, de Oliveira J, Letti LAJ, Soccol CR (2017) Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification od Industrial Products, Elsevier, pp. 543—556. Search in Google Scholar

Vargas E, Ruiz MA, Campuzano S, de Rivera GG, López-Colino F, Reviejo AJ, Pingarrón JM (2016) Talanta 152: 147—154.10.1016/j.talanta.2016.01.063 Search in Google Scholar

Xiao TL, Tesarova E, Anderson JL, Egger M, Armstrong DW (2006) J. Sep. Sci. 29(3): 429—445.10.1002/jssc.200500332 Search in Google Scholar

Yates RL, Havery DC (1999) J. Cosmet. Sci. 50: 315—325. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo