1. bookVolume 14 (2021): Issue 1 (January 2021)
Journal Details
License
Format
Journal
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
access type Open Access

Nanostructured catalysts for BIOEthanol transformation to industrially important chemicals

Published Online: 10 Sep 2021
Page range: 66 - 78
Journal Details
License
Format
Journal
First Published
10 Dec 2012
Publication timeframe
2 times per year
Languages
English
Abstract

Utilization of a low-cost biomaterial, such as bioethanol, to produce value–added compounds for current industry has been investigated. This work is focused on the catalytic transformation of bioethanol into industrially significant alkenes. Catalytic transformation of ethanol was studied using catalysts based mainly on nanostructured materials as Mg-Al hydrotalcites, sepiolites and zeolites doped with Cu, K, Sr, Zn and Mn. The catalytic tests were carried out in a plug-flow reactor in the temperature range of 350—550 °C. Undoped zeolites promote acid-catalyzed dehydration of ethanol, while in case of basic catalysts, such as hydrotalcites, the product distribution is shifted toward butadiene. The impact of the hydrotalcites preparation method on their structure and catalytic activity is reported. It was found that hydrotalcite with well-developed layered structure, prepared by slow hydrolysis, promotes the formation of butadiene (with butadiene yield of 28.2 % at 400 °C vs. ethylene yield of 17.2 % at 550 °C).

Keywords

Akiyama S, Miyaji A, Hayashi Y, Hiza M, Sekiguchi Y, Koyama T, Baba T (2018) Journal of Catalysis, 359: 184—197. Search in Google Scholar

Aramendia MA, Borau V, Jimenéz C, Marinas JM, Ruiz JR, Urbano FJ (2002) Journal of Solid State Chemistry, 168: 156—161. Search in Google Scholar

Basahel SN, Al-Thabaiti SA, Narasimharao K, Ahmed NS, Mokhtar M (2014) Journal of Nanoscience and Nanotechnology, 14(2): 1931—1946. Search in Google Scholar

Benhiti R, Ait Ichou A, Zaghloul A, Aziam R, Carja G, Zerbet M, Sinan F, Chiban M (2020) Environmental Science and Pollution Research, 27: 45767—45774. Search in Google Scholar

Bi J, Guo X, Liu M, Wang X (2010) Catalysis Today 149: 143—147. Search in Google Scholar

Constantino VRL, Pinnavaia TJ (1995) Journal of Inorganic Chemistry 34(4): 883—892. Search in Google Scholar

Corson BB, Jones HE, Welling CE, Hinckley JA, Stahly EE (1950) Industrial and Engineering Chemistry, 42: 359—373. Search in Google Scholar

Egloff G, Hulla G (1945) Chemical Reviews, 36: 63—141. Search in Google Scholar

Gao M, Jiang H, Zhang M (2018) Applied Surface Science, 439: 1072—1078. Search in Google Scholar

Godová N, Horváth B (2018) Acta Chmica Slovaca, 11(1): 11—20. Search in Google Scholar

Jones HE, Stahly EE, Corson BB (1949) Journal of the American Chemical Society, 71: 1822—1828. Search in Google Scholar

Kampmeyer PM, Stahly EE (1949) Industrial and Engineering Chemistry, 41: 550—555. Search in Google Scholar

Klein A, Palkovits RRP (2017) Catalysis Communications, 91: 72—75. Search in Google Scholar

Kyriienko PI, Larina OV, Soloviev SO, Orlyk SM, Calers C, Dzwigaj S (2017) ACS Sustainable Chemistry & Engineering, 5(3): 2075—2083. Search in Google Scholar

Lebedev SV (1929) GB Patent GB 331482. Search in Google Scholar

León M, Díaz E, Ordóñez S (2011) Catalysis Today, 164(1): 436—442. Search in Google Scholar

Li S, Men Y, Wang J, Liu S, Song Q (2019) Applied Catalysis A, General, 577: 1—9. Search in Google Scholar

Palomaresa AE, Prato JG, Rey F, Corma A (2004) Journal of Catalysis, 221(1): 62—66. Search in Google Scholar

Pampararo G, Garbarino G, Riani P, Garcia MV, Escribano VS, Busca G (2020) Applied Catalysis A, General, 602: 117710. Search in Google Scholar

Pomalaza G, Arango P, Capron M, Dumeignil F (2020) Catalysis Science & Technology 10: 4860—4911. Search in Google Scholar

Prinetto F, Ghiotti G, Graffin P, Tichit D (2000) Microporous and Mesoporous Materials, 39(1-2): 229—247. Search in Google Scholar

Rackley SA (2017) Carbon Capture and Storage 2nd Edition, Butterworth-Heinemann: 151—185. Search in Google Scholar

Rao MM, Reddy BR, Jayalakshmi M, Jaya VS, Sridhar B (2005) Materials Research Bulletin, 40(2): 347—359. Search in Google Scholar

Sekiguchi Y, Akiyama S, Urakawa W, Koyama T, Miyaji A, Motokura K, Baba T (2015) Catalysis Communication, 68: 20—24. Search in Google Scholar

Shekoohi K, Hosseini FS, Haghighi AH, Sahrayian A (2017) MethodsX 4: 86—94. Search in Google Scholar

Sikander U, Sufian S, Salam MA (2017) International Journal of Hydrogen Energy, 42(31): 19851—19868. Search in Google Scholar

Soták T, Magyarová Z, Shamzhy M, Kubů M, Gołąbek K, Čejka J, Hronec M (2021) Applied Catalysis A, General, 618: 118122. Search in Google Scholar

Szabó B, Novodárszki G, May Z, Valyon J, Hancsók J, Barthos R (2020) Molecular Catalysis 491: 110984. Search in Google Scholar

Tarach KA, Tekla J, Makowski W, Filek U, Mlekodaj K, Girman V, Góra-Marek K (2016) Catalysis Science & Technology, 6(10): 3568—3584. Search in Google Scholar

Tayrabekova S, Mäki-Arvela P, Peurla M, Paturi P, Eränen K, Ergazieva GE, Dossumov K (2018) Comptes Rendus Chimie, 21(3-4): 194—209. Search in Google Scholar

Tian G, Han G, Wang F, Liang J (2019) Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials, Elsevier: 135—201. Search in Google Scholar

Zhao Y, Li S, Wang Z, Wang S, Wang S, Ma X (2019) Chinese Chemical Letters 31(2): 535—538. Search in Google Scholar

Zhu Q, Wang B, Tan T (2016) ACS Sustainable Chemistry & Engineering, 5(1): 722—733. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo