This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Baker, G.L., Gollub, J.P. (1998). Introduction to the Dynamics of Chaotic Systems. Wydawnictwo Naukowe PWN, Warszawa, (in Polish).BakerG.L.GollubJ.P.1998Introduction to the Dynamics of Chaotic SystemsWydawnictwo Naukowe PWNWarszawa(in Polish).Search in Google Scholar
Ott, E. (1997). Chaos in Dynamical Systems. Wydawnictwo Naukowo Techniczne, Warszawa, (in Polish).OttE.1997Chaos in Dynamical SystemsWydawnictwo Naukowo TechniczneWarszawa(in Polish).Search in Google Scholar
Łuczko, J. (2008). Regular and Chaotic Vibrations in Nonlinear Mechanical Systems. Kraków University of Technology Publishing House, Kraków, (in Polish).ŁuczkoJ.2008Regular and Chaotic Vibrations in Nonlinear Mechanical SystemsKraków University of Technology Publishing HouseKraków(in Polish).Search in Google Scholar
Glabisz, W. (2003). Mathematica in Structure Mechanics Problems. Wrocław University of Technology Publishing House, Wrocław, (in Polish).GlabiszW.2003Mathematica in Structure Mechanics ProblemsWrocław University of Technology Publishing HouseWrocław(in Polish).Search in Google Scholar
Awrejcewicz, J. (1997). Secrets of Nonlinear Dynamics. Lódź University of Technology Publishing House, Lódź, (in Polish).AwrejcewiczJ.1997Secrets of Nonlinear DynamicsLódź University of Technology Publishing HouseLódź(in Polish).Search in Google Scholar
Argyris, J., Faust, G., Hase, M. (1994). An Exploration of Chaos. North-Holland Elsevier, Amsterdam.ArgyrisJ.FaustG.HaseM.1994An Exploration of ChaosNorth-Holland ElsevierAmsterdamSearch in Google Scholar
Parker T.S., Chua L.O. (1989). Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag, New York.ParkerT.S.ChuaL.O.1989Practical Numerical Algorithms for Chaotic SystemsSpringer-VerlagNew YorkSearch in Google Scholar
Medio, A., Lines, M. (2001). Nonlinear Dynamics. Cambridge University Press, United Kingdom.MedioA.LinesM.2001Nonlinear DynamicsCambridge University PressUnited KingdomSearch in Google Scholar
Permann, D., Hamilton, I. (1992). Wavelet Analysis of the time series for the Duffing oscillator: The detection of order within chaos. Physical Review Letters, 69, 2607-2610.PermannD.HamiltonI.1992Wavelet Analysis of the time series for the Duffing oscillator: The detection of order within chaosPhysical Review Letters6926072610Search in Google Scholar
Glabisz, W. (2004). Packet Wavelet Analysis in Mechanics Problems. Wrocław University of Technology Publishing House, Wrocław, (in Polish).GlabiszW.2004Packet Wavelet Analysis in Mechanics ProblemsWrocław University of Technology Publishing HouseWrocław(in Polish).Search in Google Scholar
Staszewski, W.J., Worden, K. (1996). The analysis of chaotic behaviour using fractal and wavelet theory. Proceedings of the International on Nonlinearity, Bifurcation and Chaos, Lódź, Poland, pp. 222-226.StaszewskiW.J.WordenK.1996The analysis of chaotic behaviour using fractal and wavelet theoryProceedings of the International on Nonlinearity, Bifurcation and ChaosLódź, Polandpp. 222226Search in Google Scholar
Jibing, Z., Hangshan, G., Yinchao, G. (1998). Application of wavelet transform to bifurcation and chaos study. Applied Mathematics and Mechanics, 19, 593-599.JibingZ.HangshanG.YinchaoG.1998Application of wavelet transform to bifurcation and chaos studyApplied Mathematics and Mechanics19593599Search in Google Scholar
Billings, S.A., Coca, D. (1999). Discrete Wavelet models for identification and Qualitative analysis of chaotic systems. International Journal of Bifurcation and Chaos, 9(7), 1263-1284.BillingsS.A.CocaD.1999Discrete Wavelet models for identification and Qualitative analysis of chaotic systemsInternational Journal of Bifurcation and Chaos9712631284Search in Google Scholar
Nakao, H., Mishiro, T., Yamada, M. (2001). Visualization of correlation cascade in spatiotemporal chaos using wavelets. International Journal of Bifurcation and Chaos, 11(5), 1483-1493.NakaoH.MishiroT.YamadaM.2001Visualization of correlation cascade in spatiotemporal chaos using waveletsInternational Journal of Bifurcation and Chaos11514831493Search in Google Scholar
Constantine, W.L.B., Reinhall, P.G. (2001). Wavelet based in band denoising technique for chaotic sequences. International Journal of Bifurcation and Chaos, 11(2), 483-495.ConstantineW.L.B.ReinhallP.G.2001Wavelet based in band denoising technique for chaotic sequencesInternational Journal of Bifurcation and Chaos112483495Search in Google Scholar
Mastroddi, F., Bettoli, A. (1999). Wavelet analysis for Hopf bifurcations whit aeroelastic applications. Journal of Sound and Vibration, 228, 199-210.MastroddiF.BettoliA.1999Wavelet analysis for Hopf bifurcations whit aeroelastic applicationsJournal of Sound and Vibration228199210Search in Google Scholar
Shi, Z., Yang, X., Li, Y., Yu, G. (2021). Wavelet-based Synchroextracting Transform: An effective TFA tool for machinery fault diagnosis. Control Engineering Practice, 144, 104884.ShiZ.YangX.LiY.YuG.2021Wavelet-based Synchroextracting Transform: An effective TFA tool for machinery fault diagnosisControl Engineering Practice144104884Search in Google Scholar
Varanis, M., Balthazar, J.M., Tusset, A., Ribeiro, M.A., De Oliveira, C. (2024). Signal analysis in chaotic systems: A comprehensive assessment through time-frequency analysis. New Insights on Oscillators and Their Applications to Engineering and Science, IntechOpen, London, UK. doi: 10.5772/intechopen.111087.VaranisM.BalthazarJ.M.TussetA.RibeiroM.A.De OliveiraC.2024Signal analysis in chaotic systems: A comprehensive assessment through time-frequency analysisNew Insights on Oscillators and Their Applications to Engineering and ScienceIntechOpenLondon, UK10.5772/intechopen.111087Open DOISearch in Google Scholar
Alpert, B.K, Beylkin, G., Gines, D., Vozovoi, L. (2002). Adaptive solution of partial differential equations in multiwavelet bases. Journal of Computational Physics, 182, 149-190.AlpertB.KBeylkinG.GinesD.VozovoiL.2002Adaptive solution of partial differential equations in multiwavelet basesJournal of Computational Physics182149190Search in Google Scholar
Alpert, B.K. (1993). A class of bases in L2 for the sparse representation of integral operators. SIAM Journal on Mathematical Analysis, 24, 246-262.AlpertB.K.1993A class of bases in L2 for the sparse representation of integral operatorsSIAM Journal on Mathematical Analysis24246262Search in Google Scholar
Strela, V. (1996). Multiwavelts: Theory and Applications. (PhD thesis). Massachusetts Institute of Technology, Cambridge, Massachusetts, US.StrelaV.1996Multiwavelts: Theory and ApplicationsPhD thesisMassachusetts Institute of TechnologyCambridge, Massachusetts, USSearch in Google Scholar
Chui, C.K., Lian J. (1996). A study on orthonormal multiwavelets. Applied Numerical Mathematics, 20, 273-298.ChuiC.K.LianJ.1996A study on orthonormal multiwaveletsApplied Numerical Mathematics20273298Search in Google Scholar
Fann, G., Beylkin, G., Harrison, R.J., Jordan K.E. (2004). Singular operators in multiwavelets bases. IBM Journal of Research and Development, 48(2), 161-171.FannG.BeylkinG.HarrisonR.J.JordanK.E.2004Singular operators in multiwavelets basesIBM Journal of Research and Development482161171Search in Google Scholar
Keinert, F. (2004). Wavelets and Multiwavelets. Chapman & Hall/CRC Press Company, Boca Raton, Florida.KeinertF.2004Wavelets and MultiwaveletsChapman & Hall/CRC Press CompanyBoca Raton, FloridaSearch in Google Scholar
Averbuch, A., Israeli, M., Vozovoi, L. (1999). Solution of time-dependent diffusion equations with variable coefficients using multiwavelets. Journal of Computational Physics, 150, 394-424.AverbuchA.IsraeliM.VozovoiL.1999Solution of time-dependent diffusion equations with variable coefficients using multiwaveletsJournal of Computational Physics150394424Search in Google Scholar
Holmes, P. (1979). Nonlinear oscillator with a strange attractore. Philosophical Transactions of the Royal Society of London, 294, 419-448.HolmesP.1979Nonlinear oscillator with a strange attractorePhilosophical Transactions of the Royal Society of London294419448Search in Google Scholar
Holmes, P., Moon, F.C. (1983). Strange attractors and chaos in nonlinear mechanics. Journal of Applide Mechanics, 50, 1021-1032.HolmesP.MoonF.C.1983Strange attractors and chaos in nonlinear mechanicsJournal of Applide Mechanics5010211032Search in Google Scholar
Koruba, Z., Osiecki, J. (2007). Elements of Advanced Mechanics. Świętokrzyski University of Technology Publishing House, Kielce, (in Polish).KorubaZ.OsieckiJ.2007Elements of Advanced MechanicsŚwiętokrzyski University of Technology Publishing HouseKielce(in Polish).Search in Google Scholar
Napiórkowska-Ałykow, M., Glabisz, W. (2005). Parametric identification procedure based on the Walsh wavelet packet approach for estimation of signal function derivatives. Archives of Civil and Mechanical Engineering, 5(4), 5-26.Napiórkowska-AłykowM.GlabiszW.2005Parametric identification procedure based on the Walsh wavelet packet approach for estimation of signal function derivativesArchives of Civil and Mechanical Engineering54526Search in Google Scholar