Otwarty dostęp

A Novel Method for Optimizing Parameters influencing the Bearing Capacity of Geosynthetic Reinforced Sand Using RSM, ANN, and Multi-objective Genetic Algorithm


Zacytuj

P. K. Kolay, S. Kumar, and D. Tiwari (2013). Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand. Journal of Construction Engineering Volume 2013, Article ID 293809, 10 pages. http://dx.doi.org/10.1155/2013/293809. KolayP. K. KumarS. TiwariD. 2013 Improvement of Bearing Capacity of Shallow Foundation on Geogrid Reinforced Silty Clay and Sand Journal of Construction Engineering 2013 Article ID 293809, 10 pages. http://dx.doi.org/10.1155/2013/293809. Search in Google Scholar

Abu El-Soud, S., Belal, A.M (2018). Bearing capacity of rigid shallow footing on geogrid-reinforced fine sand—experimental modeling. Arab J Geosci11, 247 (2018). https://doi.org/10.1007/s12517-018-3597-0. Abu El-SoudS. BelalA.M 2018 Bearing capacity of rigid shallow footing on geogrid-reinforced fine sand—experimental modeling Arab J Geosci 11 247 2018 https://doi.org/10.1007/s12517-018-3597-0. Search in Google Scholar

J. Binquet and K. L. Lee, (1975). “Bearing capacity tests on reinforced earth slabs,” Journal of Geotechnical Engineering Division, vol. 101, no. 12, pp. 1241–1255, 1975. BinquetJ. LeeK. L. 1975 “Bearing capacity tests on reinforced earth slabs,” Journal of Geotechnical Engineering Division 101 12 1241 1255 1975 Search in Google Scholar

J. Binquet and K. L. Lee, (1975). “Bearing capacity analysis of reinforced earth slabs,” Journal of Geotechnical Engineering Division, vol. 101, no. 12, pp. 1257–1276, 1975. BinquetJ. LeeK. L. 1975 “Bearing capacity analysis of reinforced earth slabs,” Journal of Geotechnical Engineering Division 101 12 1257 1276 1975 Search in Google Scholar

V. A. Guido, D. K. Chang, and M. A. Sweeney, (1986). “Comparison of geogrid and geotextile reinforced earth slabs,” Canadian Geotechnical Journal, vol. 23, no. 4, pp. 435–440, 1986. GuidoV. A. ChangD. K. SweeneyM. A. 1986 “Comparison of geogrid and geotextile reinforced earth slabs,” Canadian Geotechnical Journal 23 4 435 440 1986 Search in Google Scholar

J. P. Sakti and B. M. Das, (1987). “Model tests for strip foundation on clay reinforced with geotextile layers,” Transportation Research Record, no. 1153, pp. 40–45, 1987. SaktiJ. P. DasB. M. 1987 “Model tests for strip foundation on clay reinforced with geotextile layers,” Transportation Research Record 1153 40 45 1987 Search in Google Scholar

P. K. Basudhar, S. Saha, and K. Deb, (2007). “Circular footings resting on geotextile-reinforced sand bed,” Geotextiles and Geomembranes, vol. 25, no. 6, pp. 377–384, 2007. BasudharP. K. SahaS. DebK. 2007 “Circular footings resting on geotextile-reinforced sand bed,” Geotextiles and Geomembranes 25 6 377 384 2007 Search in Google Scholar

G. W. E. Milligan, R. J. Fannin, and D. M. Farrar, (1986). “Model and full-scale tests on granular layers reinforced with a geogrid,” in Proceedings of the 3rd International Conference on Geotextiles, vol. 1, pp. 61–66, Vienna, Austria, 1986. MilliganG. W. E. FanninR. J. FarrarD. M. 1986 “Model and full-scale tests on granular layers reinforced with a geogrid,” in Proceedings of the 3rd International Conference on Geotextiles 1 61 66 Vienna, Austria 1986 Search in Google Scholar

K. H. Khing, B. M. Das, V. K. Puri, S. C. Yen, and E. E. Cook, (1994). “Foundation on strong sand underlain by weak clay with geogrid at the interface,” Geotextiles and Geomembranes, vol. 13, no. 3, pp. 199–206, 1994. KhingK. H. DasB. M. PuriV. K. YenS. C. CookE. E. 1994 “Foundation on strong sand underlain by weak clay with geogrid at the interface,” Geotextiles and Geomembranes 13 3 199 206 1994 Search in Google Scholar

B. M. Das, K. H. Khing, and E. C. Shin, (1998). “Stabilization of weak clay with strong sand and geogrid at sand-clay interface,” Transportation Research Record, no. 1611, pp. 55–62, 1998. DasB. M. KhingK. H. ShinE. C. 1998 “Stabilization of weak clay with strong sand and geogrid at sand-clay interface,” Transportation Research Record 1611 55 62 1998 Search in Google Scholar

E. C. Shin, B. M. Das, V. K. Puri, S. C. Yen, and E. E. Cook, (1993). “Bearing capacity of strip foundation on geogrid-reinforced clay,” Geotechnical Testing Journal, vol. 17, no. 4, pp. 535–541, 1993. ShinE. C. DasB. M. PuriV. K. YenS. C. CookE. E. 1993 “Bearing capacity of strip foundation on geogrid-reinforced clay,” Geotechnical Testing Journal 17 4 535 541 1993 Search in Google Scholar

C. R. Patra, B. M. Das, and C. Atalar, 2005). “Bearing capacity of embedded strip foundation on geogrid-reinforced sand,” Geotextiles and Geomembranes, vol. 23, no. 5, pp. 454–462, 2005. PatraC. R. DasB. M. AtalarC. 2005 “Bearing capacity of embedded strip foundation on geogrid-reinforced sand,” Geotextiles and Geomembranes 23 5 454 462 2005 Search in Google Scholar

B. R. Phanikumar, R. Prasad, and A. Singh, 2009). “Compressive load response of geogrid-reinforced fine, medium and coarse sands,” Geotextiles and Geomembranes, vol. 27, no. 3, pp. 183–186, 2009. PhanikumarB. R. PrasadR. SinghA. 2009 “Compressive load response of geogrid-reinforced fine, medium and coarse sands,” Geotextiles and Geomembranes 27 3 183 186 2009 Search in Google Scholar

Y. L. Dong, J. Han, and X.-H. Bai, (2010). “Bearing capacities of geogridreinforced sand bases under static loading,” in Proceedings of GeoShanghai International Conference: Ground Improvement and Geosynthetics, pp. 275–281, June 2010. DongY. L. HanJ. BaiX.-H. 2010 “Bearing capacities of geogridreinforced sand bases under static loading,” in Proceedings of GeoShanghai International Conference: Ground Improvement and Geosynthetics 275 281 June 2010 Search in Google Scholar

R. J. Fragaszy and E. Lawton, (1984). “Bearing capacity of reinforced sand subgrades,” Journal of Geotechnical Engineering, vol. 110, no. 10, pp. 1500–1507, 1984. FragaszyR. J. LawtonE. 1984 “Bearing capacity of reinforced sand subgrades,” Journal of Geotechnical Engineering 110 10 1500 1507 1984 Search in Google Scholar

C.-C. Huang and F. Tatsuoka, (1990). “Bearing capacity of reinforced horizontal sandy ground,” Geotextiles and Geomembranes, vol. 9, no. 1, pp. 51–82, 1990. HuangC.-C. TatsuokaF. 1990 “Bearing capacity of reinforced horizontal sandy ground,” Geotextiles and Geomembranes 9 1 51 82 1990 Search in Google Scholar

J. O. Akinmusuru and J. A. Akinbolade, (1981). “Stability of loaded footings on reinforced soil,” Journal of the Geotechnical Engineering Division, vol. 107, no. 6, pp. 819–827, 1981. AkinmusuruJ. O. AkinboladeJ. A. 1981 “Stability of loaded footings on reinforced soil,” Journal of the Geotechnical Engineering Division 107 6 819 827 1981 Search in Google Scholar

T. Yetimoglu, M. Inanir, and O. E. Inanir, (2005). “A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay,” Geotextiles and Geomembranes, vol. 23, no. 2, pp. 174–183, 2005. YetimogluT. InanirM. InanirO. E. 2005 “A study on bearing capacity of randomly distributed fiber-reinforced sand fills overlying soft clay,” Geotextiles and Geomembranes 23 2 174 183 2005 Search in Google Scholar

S. K. Dash, N. R. Krishnaswamy, and K. Rajagopal, (2001). “Bearing capacity of strip footings supported on geocell-reinforced sand,” Geotextiles and Geomembranes, vol. 19, no. 4, pp. 235–256, 2001. DashS. K. KrishnaswamyN. R. RajagopalK. 2001 “Bearing capacity of strip footings supported on geocell-reinforced sand,” Geotextiles and Geomembranes 19 4 235 256 2001 Search in Google Scholar

S. K. Dash, S. Sireesh, and T. G. Sitharam, (2003). “Behaviour of geocell-reinforced sand beds under circular footing,” Ground Improvement, vol. 7, no. 3, pp. 111–115, 2003. DashS. K. SireeshS. SitharamT. G. 2003 “Behaviour of geocell-reinforced sand beds under circular footing,” Ground Improvement 7 3 111 115 2003 Search in Google Scholar

Raja, M.N.A., Shukla, S.K., 2020b. Ultimate bearing capacity of strip footing resting on soil bed strengthened by wraparound geosynthetic reinforcement technique. Geotext. Geomembranes 48 (6), 867e874, https://doi.org/10.1016/j.geotexmem.2020.06.005. RajaM.N.A. ShuklaS.K. 2020b Ultimate bearing capacity of strip footing resting on soil bed strengthened by wraparound geosynthetic reinforcement technique Geotext. Geomembranes 48 6 867e874 https://doi.org/10.1016/j.geotexmem.2020.06.005. Search in Google Scholar

Raja MNA, Shukla SK, Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique, Journal of Rock Mechanics and Geotechnical Engineering, https://doi.org/10.1016/j.jrmge.2021.02.001 RajaMNA ShuklaSK Experimental study on repeatedly loaded foundation soil strengthened by wraparound geosynthetic reinforcement technique Journal of Rock Mechanics and Geotechnical Engineering https://doi.org/10.1016/j.jrmge.2021.02.001 Search in Google Scholar

Fragaszy RJ, Lawton E (1984). Bearing capacity of reinforced sand subgrades. J Geotech Eng 110(10):1500–1507. FragaszyRJ LawtonE 1984 Bearing capacity of reinforced sand subgrades J Geotech Eng 110 10 1500 1507 Search in Google Scholar

Yetimoglu T, Wu JT, Saglamer A (1994). Bearing capacity of rectangular footings on geogrid–reinforced sand. J Geotech Eng 120(12):2083–2099. YetimogluT WuJT SaglamerA 1994 Bearing capacity of rectangular footings on geogrid–reinforced sand J Geotech Eng 120 12 2083 2099 Search in Google Scholar

Akinmusuru JO, Akinbolade JA (1981). Stability of loaded footings on reinforced soil. J Geotech Geoenvironmental Eng 107(ASCE 16320 Proceeding). AkinmusuruJO AkinboladeJA 1981 Stability of loaded footings on reinforced soil J Geotech Geoenvironmental Eng 107 ASCE 16320 Proceeding Search in Google Scholar

R.H. Myers, D.C. Montgomery, C.M. Anderson-Cook, (2016). Response surface methodology: process and product optimization using designed experiments, Wiley, New York. (2016). MyersR.H. MontgomeryD.C. Anderson-CookC.M. 2016 Response surface methodology: process and product optimization using designed experiments Wiley New York 2016 Search in Google Scholar

Sasmal, S. K., and R. N. Behera.(2018). “Prediction of Combined Static and Cyclic Load Induced Settlement of Shallow Strip Footing on Granular Soil Using Artificial Neural Network.” International Journal of Geotechnical Engineering 1–11. doi:10.1080/19386362.2018.1557384. SasmalS. K. BeheraR. N. 2018 “Prediction of Combined Static and Cyclic Load Induced Settlement of Shallow Strip Footing on Granular Soil Using Artificial Neural Network.” International Journal of Geotechnical Engineering 1 11 10.1080/19386362.2018.1557384 Open DOISearch in Google Scholar

Hamrouni A., Sbartai B., Dias D. (2021). “Ultimate dynamic bearing capacity of shallow strip foundations - Reliability analysis using the response surface methodology”. Soil Dynamics and Earthquake Engineering 144; 106690. HamrouniA. SbartaiB. DiasD. 2021 “Ultimate dynamic bearing capacity of shallow strip foundations - Reliability analysis using the response surface methodology” Soil Dynamics and Earthquake Engineering 144 106690 Search in Google Scholar

Hamrouni A, Dias D, Sbartai B. (2020). Soil spatial variability impact on the behaviour of a reinforced earth wall. Front Struct Civ Eng 2020:v15. HamrouniA DiasD SbartaiB 2020 Soil spatial variability impact on the behaviour of a reinforced earth wall Front Struct Civ Eng 2020 v15 Search in Google Scholar

Marandi, S.M., Anvar, M., and Bahrami, M., (2016). Uncertainty analysis of safety factor of embankment built on stone column improved soft soil using fuzzy logic α-cut technique. Computers and Geotechnics, 75, 135–144. doi:10.1016/j.compgeo.2016.01.014. MarandiS.M. AnvarM. BahramiM. 2016 Uncertainty analysis of safety factor of embankment built on stone column improved soft soil using fuzzy logic α-cut technique Computers and Geotechnics 75 135 144 10.1016/j.compgeo.2016.01.014 Open DOISearch in Google Scholar

Lafifi B, Rouaiguia A, Boumazza N (2019). Optimization of geotechnical parameters using Taguchi's design of experiment (DOE), RSM and desirability function. Innov Infrastruct Solut 4(1):1–12. LafifiB RouaiguiaA BoumazzaN 2019 Optimization of geotechnical parameters using Taguchi's design of experiment (DOE), RSM and desirability function Innov Infrastruct Solut 4 1 1 12 Search in Google Scholar

Chana Phutthananon, Pornkasem Jongpradist & Pitthaya Jamsawang (2019): Influence of cap size and strength on settlements of TDM-piled embankments over soft ground, Marine Georesources & Geotechnology, DOI: 10.1080/1064119X.2019.1613700. PhutthananonChana JongpradistPornkasem JamsawangPitthaya 2019 Influence of cap size and strength on settlements of TDM-piled embankments over soft ground Marine Georesources & Geotechnology 10.1080/1064119X.2019.1613700 Open DOISearch in Google Scholar

Zhan J, Deng A, Jaksa M (2021). Optimizing micaceous soil stabilization using response surface method. J Rock Mech Geotech Eng 13(1): 212–220. ZhanJ DengA JaksaM 2021 Optimizing micaceous soil stabilization using response surface method J Rock Mech Geotech Eng 13 1 212 220 Search in Google Scholar

Benayoun, F., Boumezerane, D., Bekkouche, S.R. et al.(2021). Optimization of geometric parameters of soil nailing using response surface methodology. Arab J Geosci14, 1965 (2021). https://doi.org/10.1007/s12517-021-08280-z. BenayounF. BoumezeraneD. BekkoucheS.R. 2021 Optimization of geometric parameters of soil nailing using response surface methodology Arab J Geosci 14 1965 2021 https://doi.org/10.1007/s12517-021-08280-z. Search in Google Scholar

Y.L. Kuo, M.B. Jaksa, A.V. Lyamin, W.S. Kaggwa (2009). ANN-based model for predicting the bearing capacity of strip footingon multi-layered cohesive soil, Computers and Geotechnics 36 (2009) 503–516. KuoY.L. JaksaM.B. LyaminA.V. KaggwaW.S. 2009 ANN-based model for predicting the bearing capacity of strip footingon multi-layered cohesive soil Computers and Geotechnics 36 2009 503 516 Search in Google Scholar

Jahed Armaghani, D., Shoib, R.S.N.S.B.R., Faizi, K. et al. (2017). Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Comput & Applic 28, 391–405 (2017). https://doi.org/10.1007/s00521-015-2072-z. Jahed ArmaghaniD. ShoibR.S.N.S.B.R. FaiziK. 2017 Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles Neural Comput & Applic 28 391 405 2017 https://doi.org/10.1007/s00521-015-2072-z. Search in Google Scholar

Behera, R. N., C. R. Patra, N. Sivakugan, and B. M. Das. (2013). “Prediction of Ultimate Bearing Capacity of Eccentrically Inclined Loaded Strip Footing by ANN, Part I.” International Journal of Geotechnical Engineering 7 (1): 36–44. doi:10.1179/1938636212Z.00000000012. BeheraR. N. PatraC. R. SivakuganN. Das.B. M. 2013 “Prediction of Ultimate Bearing Capacity of Eccentrically Inclined Loaded Strip Footing by ANN, Part I.” International Journal of Geotechnical Engineering 7 1 36 44 10.1179/1938636212Z.00000000012 Open DOISearch in Google Scholar

Sahu, R., C. R. Patra, N. Sivakugan, and B. M. Das.(2017b). “Bearing Capacity Prediction of Inclined Loaded Strip Footing on Reinforced Sand by ANN.” In International Congress and Exhibition” Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology”, 97–109. Cham: Springer. SahuR. PatraC. R. SivakuganN. DasB. M. 2017b “Bearing Capacity Prediction of Inclined Loaded Strip Footing on Reinforced Sand by ANN.” In International Congress and Exhibition” Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology” 97 109 Cham Springer Search in Google Scholar

Acharyya R, DeyA (2018). Assessment of bearing capacity for strip footing located near sloping surface considering ANN model. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3661-4. AcharyyaR DeyA 2018 Assessment of bearing capacity for strip footing located near sloping surface considering ANN model Neural Comput Appl https://doi.org/10.1007/s00521-018-3661-4. Search in Google Scholar

Acharyya R, Dey A, Kumar B (2018). Finite element and ANN-based prediction of bearing capacity of square footing resting on the crest of c-φ soil slope, International Journal of Geotechnical Engineering, DOI: 10.1080/19386362.2018.1435022. AcharyyaR DeyA KumarB 2018 Finite element and ANN-based prediction of bearing capacity of square footing resting on the crest of c-φ soil slope International Journal of Geotechnical Engineering 10.1080/19386362.2018.1435022 Open DOISearch in Google Scholar

Sethy B.P, Patra C, Das B.C, Sobhan K (2019). Prediction of ultimate bearing capacity of circular foundation on sand layer of limited thickness using artificial neural network, International Journal of Geotechnical Engineering, DOI: 10.1080/19386362.2019.1645437. SethyB.P PatraC DasB.C SobhanK 2019 Prediction of ultimate bearing capacity of circular foundation on sand layer of limited thickness using artificial neural network International Journal of Geotechnical Engineering 10.1080/19386362.2019.1645437 Open DOISearch in Google Scholar

Momeni, E., Armaghani, D.J., Fatemi, S.A. et al. (2018). Prediction of bearing capacity of thin-walled foundation: a simulation approach. Engineering with Computers34, 319–327 (2018). https://doi.org/10.1007/s00366-017-0542-x. MomeniE. ArmaghaniD.J. FatemiS.A. 2018 Prediction of bearing capacity of thin-walled foundation: a simulation approach Engineering with Computers 34 319 327 2018 https://doi.org/10.1007/s00366-017-0542-x. Search in Google Scholar

Acharyya, R., Dey, A. (2018). Assessment of bearing capacity of interfering strip footings located near sloping surface considering artificial neural network technique. J. Mt. Sci.15, 2766–2780 (2018). https://doi.org/10.1007/s11629-018-4986-2. AcharyyaR. DeyA. 2018 Assessment of bearing capacity of interfering strip footings located near sloping surface considering artificial neural network technique J. Mt. Sci. 15 2766 2780 2018 https://doi.org/10.1007/s11629-018-4986-2. Search in Google Scholar

Hossein Moayedi, Sajad Hayati, (2018). Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods, Applied Soft Computing, Volume 66, 2018, Pages 208–219, ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2018.02.027. MoayediHossein HayatiSajad 2018 Modelling and optimization of ultimate bearing capacity of strip footing near a slope by soft computing methods Applied Soft Computing 66 2018 208 219 ISSN 1568-4946, https://doi.org/10.1016/j.asoc.2018.02.027. Search in Google Scholar

Muhammad Nouman Amjad Raja, Sanjay Kumar Shukla, Geotextiles and Geomembranes, https://doi.org/10.1016/j.geotexmem.2021.04.007 Amjad RajaMuhammad Nouman ShuklaSanjay Kumar Geotextiles and Geomembranes https://doi.org/10.1016/j.geotexmem.2021.04.007 Search in Google Scholar

Raja MNA, Shukla SK (2020). An extreme learning machine model for geosynthetic-reinforced sandy soil foundations. Proc Inst Civil Eng-Geotech Eng 175(4):383–403. RajaMNA ShuklaSK 2020 An extreme learning machine model for geosynthetic-reinforced sandy soil foundations Proc Inst Civil Eng-Geotech Eng 175 4 383 403 Search in Google Scholar

Amjad Raja MN et al., Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling, Journal of Rock Mechanics and Geotechnical Engineering, https://doi.org/10.1016/j.jrmge.2022.04.012 Amjad RajaMN Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling Journal of Rock Mechanics and Geotechnical Engineering https://doi.org/10.1016/j.jrmge.2022.04.012 Search in Google Scholar

Khan, M.U.A., Shukla, S.K. & Raja, M.N.A (2022). Load-settlement response of a footing over buried conduit in a sloping terrain: a numerical experiment-based artificial intelligent approach. Soft Comput 26, 6839–6856. https://doi.org/10.1007/s00500-021-06628-x KhanM.U.A. ShuklaS.K. RajaM.N.A 2022 Load-settlement response of a footing over buried conduit in a sloping terrain: a numerical experiment-based artificial intelligent approach Soft Comput 26 6839 6856 https://doi.org/10.1007/s00500-021-06628-x Search in Google Scholar

Bardhan, A., Kardani, N., Alzo’ubi, A.K. et al (2022). A Comparative Analysis of Hybrid Computational Models Constructed with Swarm Intelligence Algorithms for Estimating Soil Compression Index. Arch Computat Methods Eng29, 4735–4773. https://doi.org/10.1007/s11831-022-09748-1 BardhanA. KardaniN. Alzo’ubiA.K. 2022 A Comparative Analysis of Hybrid Computational Models Constructed with Swarm Intelligence Algorithms for Estimating Soil Compression Index Arch Computat Methods Eng 29 4735 4773 https://doi.org/10.1007/s11831-022-09748-1 Search in Google Scholar

Bardhan, A.; Kardani, N.; Alzo’ubi, A.K.; Roy, B.; Samui, P.; Gandomi, A.H (2022). Novel Integration of Extreme Learning Machine and Improved Harris Hawks Optimization with Particle Swarm Optimization-Based Mutation for Predicting Soil Consolidation Parameter. J. Rock Mech. Geotech. Eng., 14, 1588–1608. BardhanA. KardaniN. Alzo’ubiA.K. RoyB. SamuiP. GandomiA.H 2022 Novel Integration of Extreme Learning Machine and Improved Harris Hawks Optimization with Particle Swarm Optimization-Based Mutation for Predicting Soil Consolidation Parameter J. Rock Mech. Geotech. Eng. 14 1588 1608 Search in Google Scholar

Muhammad Nouman Amjad Raja, Sanjay Kumar Shukla & Muhammad Umer Arif Khan (2021): An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil, International Journal of Pavement Engineering, DOI: 10.1080/10298436.2021.1904237. Amjad RajaMuhammad Nouman ShuklaSanjay Kumar Umer Arif KhanMuhammad 2021 An intelligent approach for predicting the strength of geosynthetic-reinforced subgrade soil International Journal of Pavement Engineering 10.1080/10298436.2021.1904237 Open DOISearch in Google Scholar

Bardhan A, GuhaRay A, Gupta S, Pradhan B, Gokceoglu C (2022). A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of dedicated freight corridor. Transp Geotech 32:100678. BardhanA GuhaRayA GuptaS PradhanB GokceogluC 2022 A novel integrated approach of ELM and modified equilibrium optimizer for predicting soil compression index of subgrade layer of dedicated freight corridor Transp Geotech 32 100678 Search in Google Scholar

Hasthi V, Raja MNA, Hegde A, Shukla SK (2022). Experimental and intelligent modelling for predicting the amplitude of footing resting on geocell-reinforced soil bed under vibratory load. Transp Geotech 100783. HasthiV RajaMNA HegdeA ShuklaSK 2022 Experimental and intelligent modelling for predicting the amplitude of footing resting on geocell-reinforced soil bed under vibratory load Transp Geotech 100783 Search in Google Scholar

Montgomery D (2001). Design and analysis of experiments. New York: John Wiley and Sons. MontgomeryD 2001 Design and analysis of experiments New York John Wiley and Sons Search in Google Scholar

S.A. Maruyama, S.V. Palombini, T. Claus, F. Carbonera, P.F. Montanher, N.E.D. Souza, M. Matsushita, Application of box-behnken design to the study of fatty acids and antioxidant activity from enriched white bread, J. Braz. Chem. Soc. 24 (9) (2013) 1520–1529. MaruyamaS.A. PalombiniS.V. ClausT. CarboneraF. MontanherP.F. SouzaN.E.D. MatsushitaM. Application of box-behnken design to the study of fatty acids and antioxidant activity from enriched white bread J. Braz. Chem. Soc. 24 9 2013 1520 1529 Search in Google Scholar

Zerti, A., Yallese, M.A., Meddour, I. et al. (2019). Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations. Int J AdvManuf Technol102, 135–157 (2019). https://doi.org/10.1007/s00170-018-2984-8 ZertiA. YalleseM.A. MeddourI. 2019 Modeling and multi-objective optimization for minimizing surface roughness, cutting force, and power, and maximizing productivity for tempered stainless steel AISI 420 in turning operations Int J AdvManuf Technol 102 135 157 2019 https://doi.org/10.1007/s00170-018-2984-8 Search in Google Scholar

Y. Nagata, K.H. Chu, (2003). Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnol. Lett. 25, 1837–1842 (2003). NagataY. ChuK.H. 2003 Optimization of a fermentation medium using neural networks and genetic algorithms Biotechnol. Lett. 25 1837 1842 2003 Search in Google Scholar

B. Sarkar, A. Sengupta, S. De et al., (2009). Prediction of permeate fluxduring electric field enhanced cross-flow ultrafiltration a neural network approach. Sep. Purif. Technol. 65, 260–268 (2009). SarkarB. SenguptaA. DeS. 2009 Prediction of permeate fluxduring electric field enhanced cross-flow ultrafiltration a neural network approach Sep. Purif. Technol. 65 260 268 2009 Search in Google Scholar

Meddour, I., Yallese, M.A., Bensouilah, H. et al. (2018). Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool. Int J AdvManuf Technol97, 1931–1949 (2018). https://doi.org/10.1007/s00170-018-2026-6. MeddourI. YalleseM.A. BensouilahH. 2018 Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool Int J AdvManuf Technol 97 1931 1949 2018 https://doi.org/10.1007/s00170-018-2026-6. Search in Google Scholar

Kalman BL, Kwasny SC (1992). Why Tanh: choosing a sigmoidal function, Proc. Int. Jt. Conf Neural Network. Baltimore, 4 578–581. KalmanBL KwasnySC 1992 Why Tanh: choosing a sigmoidal function Proc. Int. Jt. Conf Neural Network Baltimore 4 578 581 Search in Google Scholar

Labidi, A., Tebassi, H., Belhadi, S. et al. (2018). Cutting Conditions Modeling and Optimization in Hard Turning Using RSM, ANN and Desirability Function. J Fail. Anal. and Preven.18, 1017–1033 (2018). https://doi.org/10.1007/s11668-018-0501-x LabidiA. TebassiH. BelhadiS. 2018 Cutting Conditions Modeling and Optimization in Hard Turning Using RSM, ANN and Desirability Function J Fail. Anal. and Preven. 18 1017 1033 2018 https://doi.org/10.1007/s11668-018-0501-x Search in Google Scholar

M. Ramezani, A. Afsari, (2015). Surface roughness and cutting force estimation in the CNC turning using artificial neural networks. Manag. Sci. Lett. 5, 357–362 (2015). RamezaniM. AfsariA. 2015 Surface roughness and cutting force estimation in the CNC turning using artificial neural networks Manag. Sci. Lett. 5 357 362 2015 Search in Google Scholar

M. Rajendra, P.C. Jena, H. Raheman, (2009). Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 88, 868–875 (2009). RajendraM. JenaP.C. RahemanH. 2009 Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA Fuel 88 868 875 2009 Search in Google Scholar

R.M. Garcia-Gimeno, C. Hervas-Martinez, R. Rodriguez-Perezetal., (2005). Modelling the growth of Leuconostocme senteroides by artificial neural networks. Int. J. Food Microbiol.105, 317–332(2005). Garcia-GimenoR.M. Hervas-MartinezC. Rodriguez-Perezetal.R. 2005 Modelling the growth of Leuconostocme senteroides by artificial neural networks Int. J. Food Microbiol. 105 317 332 2005 Search in Google Scholar

K.R. Kashyzadeh, E. Maleki, (2017). Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel. J. Fail. Anal. Prev. 17(6), 1276–1287(2017). KashyzadehK.R. MalekiE. 2017 Experimental investigation and artificial neural network modeling of warm galvanization and hardened chromium coatings thickness effects on fatigue life of AISI 1045 carbon steel J. Fail. Anal. Prev. 17 6 1276 1287 2017 Search in Google Scholar

Huang, C., and Tatsuoka, F. 1990. “Bearing capacity of reinforced horizontal sandy ground.” Geotext. Geomembr., 9, 51–80. HuangC. TatsuokaF. 1990 “Bearing capacity of reinforced horizontal sandy ground.” Geotext. Geomembr. 9 51 80 Search in Google Scholar

Khing, K. H., Das, B. M., Puri, V. K., Cook, E. E., and Yen, S. C. 1993. “The bearing capacity of a strip foundation on geogrid rein forceds and.” Geotext. Geomembr., 124, 351–361. KhingK. H. DasB. M. PuriV. K. CookE. E. YenS. C. 1993 “The bearing capacity of a strip foundation on geogrid rein forceds and.” Geotext. Geomembr. 124 351 361 Search in Google Scholar

Shin, E. C., Das, B. M., Lee, E. S., and Atalar, C. 2002. “Bearing capacity of strip foundation on geogrid-reinforced sand.” Geotech. Geologic. Eng., 20, 169–180. ShinE. C. DasB. M. LeeE. S. AtalarC. 2002 “Bearing capacity of strip foundation on geogrid-reinforced sand.” Geotech. Geologic. Eng. 20 169 180 Search in Google Scholar

Cicek E, Guler E, Yetimoglu T (2015). Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil. Soils Found 55(4):661–677. CicekE GulerE YetimogluT 2015 Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil Soils Found 55 4 661 677 Search in Google Scholar

El Sawwaf M, Nazir AK (2010). Behavior of repeatedly loaded rectangular footings resting on reinforced sand. Alex Eng J 49(4):349–356. https://doi.org/10.1016/j.Egg.2010.07.002 El SawwafM NazirAK 2010 Behavior of repeatedly loaded rectangular footings resting on reinforced sand Alex Eng J 49 4 349 356 https://doi.org/10.1016/j.Egg.2010.07.002 Search in Google Scholar

Abu El-Soud S, BelalAM (2019). Numerical modeling of rigid strip shallow foundations overlaying geosythetics-reinforced loose fine sand deposits. Arab J Geosci. https://doi.org/10.1007/s12517-019-4436-7 Abu El-SoudS BelalAM 2019 Numerical modeling of rigid strip shallow foundations overlaying geosythetics-reinforced loose fine sand deposits Arab J Geosci https://doi.org/10.1007/s12517-019-4436-7 Search in Google Scholar

Akinmusuru, J. O., and Akinboladeh, J. A. (1981). “Stability of loaded footings on reinforced soil.” J. Geotech. Engrg. Div., 1076, 819–827. AkinmusuruJ. O. AkinboladehJ. A. 1981 “Stability of loaded footings on reinforced soil.” J. Geotech. Engrg. Div. 1076 819 827 Search in Google Scholar

Das, B. M., and Omar, M. T. (1994). “The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement.” Geotech. Geologic. Eng., 12, 133–141. DasB. M. OmarM. T. 1994 “The effects of foundation width on model tests for the bearing capacity of sand with geogrid reinforcement.” Geotech. Geologic. Eng. 12 133 141 Search in Google Scholar

El Sawwaf, M. 2007. “Behavior of strip footing on geogridrein forceds and over a soft clay slope.” Geotext. Geomembr., 25, 50–60. El SawwafM. 2007 “Behavior of strip footing on geogridrein forceds and over a soft clay slope.” Geotext. Geomembr. 25 50 60 Search in Google Scholar

Boushehrian J, Hataf N. (2003). Experimental and numerical investigation of the bearing capacity of model circular and ring footing on reinforced sand. Geotextiles and Geomembranes 2003;21(4):241e56. BoushehrianJ HatafN. 2003 Experimental and numerical investigation of the bearing capacity of model circular and ring footing on reinforced sand Geotextiles and Geomembranes 2003 21 4 241e56 Search in Google Scholar

Mosallanezhad M, Hataf N, Ghahramani A. (2008). Experimental study of bearing capacityof granular soils reinforced with innovative grid-anchor system. Geotechnical and Geological Engineering 2008;26(3):299e312. MosallanezhadM HatafN GhahramaniA. 2008 Experimental study of bearing capacityof granular soils reinforced with innovative grid-anchor system Geotechnical and Geological Engineering 2008 26 3 299e312 Search in Google Scholar

Latha M, Somwanshi A. (2009). Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes 2009;27(6):409e22. LathaM SomwanshiA. 2009 Effect of reinforcement form on the bearing capacity of square footings on sand Geotextiles and Geomembranes 2009 27 6 409e22 Search in Google Scholar

DeMerchant MR, Valsangkar AJ, Schriver AB (2002). Plate loadtests on geogrid reinforced expanded shale lightweight aggregate. Geotext Geomembr 20:173–190. DeMerchantMR ValsangkarAJ SchriverAB 2002 Plate loadtests on geogrid reinforced expanded shale lightweight aggregate Geotext Geomembr 20 173 190 Search in Google Scholar

A.I Khuri, S. Mukhopadhyay, (2010). Response surface methodology, WIREs. Comput. Stat. 2 (2010) 128–149. KhuriA.I MukhopadhyayS. 2010 Response surface methodology WIREs. Comput. Stat. 2 2010 128 149 Search in Google Scholar

R.H. Myers, D.C. Montgomery, (2002). Response surface methodology: process and product optimization using designed experiments, 2nd ed. John Wiley and Sons, Inc. New York. (2002). MyersR.H. MontgomeryD.C. 2002 Response surface methodology: process and product optimization using designed experiments 2nd ed. John Wiley and Sons, Inc. New York 2002 Search in Google Scholar

A.K. Sahoo, P.C. Mishra, (2014). A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel, Inter. J. Indus. Eng. Comp. 5 (2014) 407–416. SahooA.K. MishraP.C. 2014 A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel Inter. J. Indus. Eng. Comp. 5 2014 407 416 Search in Google Scholar

Bardhan, A.; Kardani, N.; Alzo’ubi, A.K.; Roy, B.; Samui, P.; Gandomi, A.H. Novel Integration of Extreme Learning Machine and Improved Harris Hawks Optimization with Particle Swarm Optimization-Based Mutation for Predicting Soil Consolidation Parameter. J. Rock Mech. Geotech. Eng. 2022, 14, 1588–1608. BardhanA. KardaniN. Alzo’ubiA.K. RoyB. SamuiP. GandomiA.H. Novel Integration of Extreme Learning Machine and Improved Harris Hawks Optimization with Particle Swarm Optimization-Based Mutation for Predicting Soil Consolidation Parameter J. Rock Mech. Geotech. Eng. 2022 14 1588 1608 Search in Google Scholar

Khellaf A., Aouici H., Smaiah S., Boutabba S., Yallese M. A., Elbah M., (2016). Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography, Int J AdvManuf Technol, 10.1007/s00170-016-9077-3. KhellafA. AouiciH. SmaiahS. BoutabbaS. YalleseM. A. ElbahM. 2016 Comparative assessment of two ceramic cutting tools on surface roughness in hard turning of AISI H11 steel: including 2D and 3D surface topography Int J AdvManuf Technol 10.1007/s00170-016-9077-3 Open DOISearch in Google Scholar

Reddy NSK, Rao PV (2005). Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling. Int J AdvManuf Technol 26(11–12):1202–1210. ReddyNSK RaoPV 2005 Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling Int J AdvManuf Technol 26 11–12 1202 1210 Search in Google Scholar

eISSN:
2083-831X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics