Otwarty dostęp

Effect of randomly distributed polypropylene fiber reinforcement on the shear behavior of sandy soil


Zacytuj

Abtahi, M.,, Ebadi, F., Hejazi, M., Sheikhzadeh, M. (2008). On the use of textile fibers to achieve mechanical soil stabilization. In: 4th Inttex cloth des conf, Dubrovnik, Croatia; 5–8 October.AbtahiM.EbadiF.HejaziM.SheikhzadehM.2008On the use of textile fibers to achieve mechanical soil stabilization4th Inttex cloth des confDubrovnik, Croatia;58Search in Google Scholar

Ahmad, F., Mujah, D., Hazarika, H., and Safari, A. (2012). Assessing the potential reuse of recycled glass fibre in problematic soil applications, Journal of Cleaner Production, 35, 102–107.AhmadF.MujahD.HazarikaH.SafariA.2012Assessing the potential reuse of recycled glass fibre in problematic soil applications, Journal of Cleaner Production3510210710.1016/j.jclepro.2012.05.047Search in Google Scholar

Al Refeai, O. (1991). Behaviour of granular soils reinforced with discrete randomly oriented inclusions. GeotextGeomembr,10, 319–33.Al RefeaiO.1991Behaviour of granular soils reinforced with discrete randomly oriented inclusionsGeotextGeomembr103193310.1016/0266-1144(91)90009-LSearch in Google Scholar

Arab, A., Shahrour, I., Lancelot, L. (2011). Alaboratory study of liquefaction of partially saturated sand. J. Iber. Geol. 37(1), 29–36.ArabA.ShahrourI.LancelotL.2011Alaboratory study of liquefaction of partially saturated sandJ. Iber. Geol371293610.5209/rev_JIGE.2011.v37.n1.2Search in Google Scholar

ASTM D 422-63. Standard test methods for particle-size analysis of soils. West Conshohoken, PA: ASTM International.ASTM D 422-63. Standard test methods for particle-size analysis of soilsWest Conshohoken, PAASTM InternationalSearch in Google Scholar

ASTM D 4253-00. Standard test methods for maximum index density and unit weight of soils using a vibratory table. West Conshohocken, PA: ASTM International.ASTM D 4253-00Standard test methods for maximum index density and unit weight of soils using a vibratory tableWest Conshohocken, PAASTM InternationalSearch in Google Scholar

ASTM D4254-00. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. West Conshohoken, PA: ASTM International.ASTM D4254-00Standard test methods for minimum index density and unit weight of soils and calculation of relative densityWest Conshohoken, PAASTM InternationalSearch in Google Scholar

ASTM D854-02. Standard test methods for Specific Gravity of Soil Solids by Water Pycnometer. West Conshohocken, PA: ASTM International.ASTM D854-02Standard test methods for Specific Gravity of Soil Solids by Water PycnometerWest Conshohocken, PAASTM InternationalSearch in Google Scholar

Belkhatir, M., Missoum, H., Arab, A., Della, N. and Schanz, T. (2011). The undrained shear strength characteristics of silty sand: an experimental study of the effect of fines. Geologia Croatica, 64(1), 31–39.BelkhatirM.MissoumH.ArabA.DellaN.SchanzT.2011The undrained shear strength characteristics of silty sand: an experimental study of the effect of finesGeologia Croatica641313910.4154/GC.2011.03Search in Google Scholar

Belkhatir, M., Schanz T., Arab, A. (2013). Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures, Environ. Earth Sci., 70(6), 2469–2479. doi.org/10.1007/s12665-013-2289-zBelkhatirM.SchanzT.ArabA.2013Effect of fines content and void ratio on the saturated hydraulic conductivity and undrained shear strength of sand–silt mixtures, EnvironEarth Sci70624692479doi.org/10.1007/s12665-013-2289-z10.1007/s12665-013-2289-zSearch in Google Scholar

Benessalah,I., Arab, A., Villard, P., Sadek, M., Kadri, A. (2015). Laboratory study on shear strength behaviour of reinforced sandy soil: effect of glass-fibers content and other parameters. Arab J SciEng 41(4), 1343–1353.BenessalahI.ArabA.VillardP.SadekM.KadriA.2015Laboratory study on shear strength behaviour of reinforced sandy soil: effect of glass-fibers content and other parametersArab J SciEng4141343135310.1007/s13369-015-1912-6Search in Google Scholar

Consoli C, Festugato L, Heineck S. (2009). Strain-hardening behaviour of fiber reinforced sand in view of filament geometry. Geosynth Int, 16, 109–15.ConsoliCFestugatoLHeineckS.2009Strain-hardening behaviour of fiber reinforced sand in view of filament geometryGeosynth Int161091510.1680/gein.2009.16.2.109Search in Google Scholar

Della, N., Arab, A., Belkhatir, M. (2011). A laboratory study of the initial structure and the overconsolidation effects on the undrained monotonic behavior of sandy soil from Chlef region in northern Algeria. Arab. J. Geosci. 4(5–6), 983–991.DellaN.ArabA.BelkhatirM.2011A laboratory study of the initial structure and the overconsolidation effects on the undrained monotonic behavior of sandy soil from Chlef region in northern AlgeriaArab. J. Geosci45–698399110.1007/s12517-010-0178-2Search in Google Scholar

Denine, S., Della, N., Dlawar, M. R., Sadok, F., Canou, J., Dupla, J.-C. (2016). Effect of geotextile reinforcement on shear strength of sandy soil: laboratory study. Stud Geotech et Mech, 38 (4), 3–13.DenineS.DellaN.DlawarM. R.SadokF.CanouJ.DuplaJ.-C.2016Effect of geotextile reinforcement on shear strength of sandy soil: laboratory studyStud Geotech et Mech38431310.1515/sgem-2016-0026Search in Google Scholar

Diambra, A., Ibraim, E., Wood, D.M., Russell, A.R. (2010). Fibre reinforced sands: experiments and modelling. Geotextiles and Geomembranes, 28(3), 238–250.DiambraA.IbraimE.WoodD.M.RussellA.R.2010Fibre reinforced sands: experiments and modellingGeotextiles and Geomembranes28323825010.1016/j.geotexmem.2009.09.010Search in Google Scholar

Durville, J.L., Meneroud, J.P. (1982). Phenomenes geomorphologiques induits par le seisme d’El-Asnam, Algerie. Bull. Liaison Labo. P. et Ch., 120, juillet-aout, , 13–23.DurvilleJ.L.MeneroudJ.P.1982Phenomenes geomorphologiques induits par le seisme d’El-Asnam, AlgerieBull. Liaison Labo. P. et Ch., 120, juillet-aout1323Search in Google Scholar

Ghiassian, H., Jamshidi, R., Tabarsa. A. (2008). Dynamic performance of Toyoura sand reinforced with randomly distributed carpet waste strips. In: 4th Dec geol earth eng and soil dyn conf, Sacramento, California, USA, May, 18–22.GhiassianH.JamshidiR.TabarsaA.2008Dynamic performance of Toyoura sand reinforced with randomly distributed carpet waste strips4th Dec geol earth eng and soil dyn confSacramento, California, USA182210.1061/40975(318)44Search in Google Scholar

Gray, D.H., Ohashi, H., (1983). Mechanics of fiber reinforcement in sands. Journal of Geotechnical Engineering, ASCE 109(3), 335–353.GrayD.H.OhashiH.1983Mechanics of fiber reinforcement in sandsJournal of Geotechnical Engineering, ASCE109333535310.1061/(ASCE)0733-9410(1983)109:3(335)Search in Google Scholar

Greenwood, J., Norris, E., Wint, J. (2004). Assessing the contribution of vegetation to slope stability. Geotech Eng, Proc the ICE, GE4, 199–207.GreenwoodJ.NorrisE.WintJ.2004Assessing the contribution of vegetation to slope stabilityGeotech Eng, Proc the ICE, GE419920710.1680/geng.2004.157.4.199Search in Google Scholar

Greenwood J. SLIP4EX (2006). a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changes. GeotechGeolEng,24, 449–65.GreenwoodJ. SLIP4EX2006a program for routine slope stability analysis to include the effects of vegetation, reinforcement and hydrological changesGeotechGeolEng244496510.1007/978-1-4020-5593-5_18Search in Google Scholar

Haeri, S.M., Noorzad, R., Oskoorouchi, A.M., (2000. Effect of geotextile reinforcement on the mechanical behavior of sand, Geotextiles and Geomembranes, 18(6), 385–402.HaeriS.M.NoorzadR.OskoorouchiA.M.(2000. Effect of geotextile reinforcement on the mechanical behavior of sand, Geotextiles and Geomembranes18638540210.1016/S0266-1144(00)00005-4Search in Google Scholar

Ibraim, E., Diambra, A., Muir Wood, D., Russell, A.R. (2010). Static liquefaction of fibre reinforced sand under monotonic Loading. Geotextiles and Geomembranes, 28 (4), 374–385.IbraimE.DiambraA.Muir WoodD.RussellA.R.2010Static liquefaction of fibre reinforced sand under monotonic LoadingGeotextiles and Geomembranes28437438510.1016/j.geotexmem.2009.12.001Search in Google Scholar

Jamshidi, R., Towhata, I., Ghiassian, H., Tabarsa, R. (2010). Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dyn Earthq Eng, 30, 438–46.JamshidiR.TowhataI.GhiassianH.TabarsaR.2010Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfillSoil Dyn Earthq Eng304384610.1016/j.soildyn.2009.12.017Search in Google Scholar

Kim, Y.S., Oh, S.W., Cho, D.S. (2010) Effect of non-woven geotextile reinforcement on mechanical behavior of sand, J. Korean Geosynthetics Society, 9(4), 39–45.KimY.S.OhS.W.ChoD.S.2010Effect of non-woven geotextile reinforcement on mechanical behavior of sand, JKorean Geosynthetics Society943945Search in Google Scholar

Krim, A., Zitouni, Z., Arab, A., Belkhatir, M. (2013) Identification of the behavior of sandy soil to static liquefaction and microtomography. Arab. J. Geosci. 6(7), 2211–2224.KrimA.ZitouniZ.ArabA.BelkhatirM.2013Identification of the behavior of sandy soil to static liquefaction and microtomographyArab. J. Geosci672211222410.1007/s12517-012-0534-5Search in Google Scholar

Liu, J., Wang, G., Kamai, T., Zhang, F, Yang, J., Shi, B. (2011). Static liquefaction behaviour of saturated fiber-reinforced sand in undrained ring-shear tests, Geotextile and Geomembranes, 29(5), 462–471.LiuJ.WangG.KamaiT.ZhangF, Yang, J.ShiB.2011Static liquefaction behaviour of saturated fiber-reinforced sand in undrained ring-shear tests, Geotextile and Geomembranes29546247110.1016/j.geotexmem.2011.03.002Search in Google Scholar

Maher, M.H., Gray, D.H. (1990). Static response of sand reinforced with fibres. Journal of Geotechnical Engineering, ASCE 116 (11), 1661–1677.MaherM.H.GrayD.H.1990Static response of sand reinforced with fibresJournal of Geotechnical Engineering, ASCE116111661167710.1061/(ASCE)0733-9410(1990)116:11(1661)Search in Google Scholar

Micha1owski, R.L., Cermak, J. (2002). Strength anisotropy of fiber-reinforced sand. Computers and Geotechnics 29(4), 279–299.Micha1owskiR.L.CermakJ.2002Strength anisotropy of fiber-reinforced sandComputers and Geotechnics29427929910.1016/S0266-352X(01)00032-5Search in Google Scholar

Michalowiski L, Zhao A. (1996). Failure of fiber-reinforced granular soils. J Geotech Eng ASCE, 122(3), 226–34.MichalowiskiLZhaoA.1996Failure of fiber-reinforced granular soilsJ Geotech Eng ASCE12232263410.1061/(ASCE)0733-9410(1996)122:3(226)Search in Google Scholar

Nouri, S., Nechnech, A., Lamri, B., Lurdes Lopes, M. (2015). Triaxial test of drained test reinforced with plastic layers, Arab. J.Geosci., 9(1), 1–9.NouriS.NechnechA.LamriB.Lurdes LopesM.2015Triaxial test of drained test reinforced with plastic layers, ArabJ.Geosci911910.1007/s12517-015-2017-ySearch in Google Scholar

Prabakar, J., Sridhar, R.S. (2002). Effect of random inclusion of sisal fibre on strength behaviour of soil, Construction and Building Materials, 16(2), 123–131.PrabakarJ.SridharR.S.2002Effect of random inclusion of sisal fibre on strength behaviour of soilConstruction and Building Materials16212313110.1016/S0950-0618(02)00008-9Search in Google Scholar

Park, T., Ann Tan, S., (2005). Enhanced performance of reinforced soil walls by the inclusion of short fiber, Geotexiles and Geomembranes 23(4), 348–361.ParkT.Ann TanS.2005Enhanced performance of reinforced soil walls by the inclusion of short fiberGeotexiles and Geomembranes23434836110.1016/j.geotexmem.2004.12.002Search in Google Scholar

Ranjan, G., Vasan, R.M., and Charan, H.D. (1994). Behaviour of plastic fiber reinforced sand. Geotextiles and Geomembranes, 13(8), 555–565.RanjanG.VasanR.M.CharanH.D.1994Behaviour of plastic fiber reinforced sandGeotextiles and Geomembranes13855556510.1016/0266-1144(94)90019-1Search in Google Scholar

Romero, R.J. (2003). Development of a constitutive model for fiber-reinforced soils. Dissertation submitted in partial fulfillment for the requirements of the Doctoral Degree, University of Missouri-Columbia.RomeroR.J.2003Development of a constitutive model for fiber-reinforced soils. Dissertation submitted in partial fulfillment for the requirements of the Doctoral DegreeUniversity of Missouri-ColumbiaSearch in Google Scholar

Santoni L, Tingle S, Webster L. (2001). Engineering properties of sand–fiber mixtures for road construction, J. Geotech. Geoenviron. Eng., 127(3), 258–68.SantoniLTingleSWebsterL.2001Engineering properties of sand–fiber mixtures for road construction, JGeotech. Geoenviron. Eng12732586810.1061/(ASCE)1090-0241(2001)127:3(258)Search in Google Scholar

Denine, S., Della N., Feia S., Muhammed, R.D., Canou, J., Dupla, J.-C. (2018). Shear behavior of geotextile-reinforced Chlef sand in the Mediterranean region: Laboratory investigation, Marine Georesources&Geotechnology, accepted, published online.DenineS.DellaN.FeiaS.MuhammedR.D.CanouJ.DuplaJ.-C.2018Shear behavior of geotextile-reinforced Chlef sand in the Mediterranean region: Laboratory investigation, Marine Georesources&Geotechnology, acceptedpublished online10.1080/1064119X.2018.1466224Search in Google Scholar

Tingle, S., Santoni, S., Webster, L., (2002). Full-scale field tests of discrete fiber-reinforced sand, J. Trans. Eng. ASCE;128(1): 9–16.TingleS.SantoniS.WebsterL.2002Full-scale field tests of discrete fiber-reinforced sand, JTrans. Eng. ASCE128191610.1061/(ASCE)0733-947X(2002)128:1(9)Search in Google Scholar

Wei, L., Chai, S.X., Zhang, H.Y., Qian Shi, Q. (2018). Mechanical properties of soil reinforced with both lime and four kinds of fiber, Construction and Building Materials, 172, 300308.WeiL.ChaiS.X.ZhangH.Y.Qian ShiQ.2018Mechanical properties of soil reinforced with both lime and four kinds of fiber, Construction and Building Materials17230030810.1016/j.conbuildmat.2018.03.248Search in Google Scholar

Khebizi, W., Della, N., Denine, S., Canou? J., Dupla, J-C. (2018). Undrained behaviour of polypropylene fibre reinforced sandy soil under monotonic loading, Geomechanics and Geoengineering, 14(1), 3040.KhebiziW.DellaN.DenineS.Canou?J.DuplaJ-C.2018Undrained behaviour of polypropylene fibre reinforced sandy soil under monotonic loadingGeomechanics and Geoengineering141304010.1080/17486025.2018.1508855Search in Google Scholar

Wu, T., McOmber, M., Erb, T., Beal, E. (1988). Study of soil–root interaction. J GeotechEng ASCE; 114 (12):1351–1375.WuT.McOmberM.ErbT.BealE.1988Study of soil–root interactionJ GeotechEng ASCE;114121351137510.1061/(ASCE)0733-9410(1988)114:12(1351)Search in Google Scholar

Yetimoglu, T., Salbas, O.A. (2003). Study on shear strength of sands reinforced with randomly distributed discrete fibers, Geotextiles and Geomembranes, 21 (2), 103–110.YetimogluT.SalbasO.A.2003Study on shear strength of sands reinforced with randomly distributed discrete fibersGeotextiles and Geomembranes21210311010.1016/S0266-1144(03)00003-7Search in Google Scholar

Zornberg, G. (2002). Discrete framework for limit equilibrium analysis of fiber reinforced soil. Géotechnique, 52(8), 593–604ZornbergG.2002Discrete framework for limit equilibrium analysis of fiber reinforced soilGéotechnique52859360410.1680/geot.2002.52.8.593Search in Google Scholar

eISSN:
2083-831X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics