1. bookTom 74 (2020): Zeszyt 4 (August 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-890X
Pierwsze wydanie
14 Sep 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski
Otwarty dostęp

Optimisation of Lactose Hydrolysis by Combining Solids and ß-Galactosidase Concentrations in Whey Permeates

Data publikacji: 22 Sep 2020
Tom & Zeszyt: Tom 74 (2020) - Zeszyt 4 (August 2020)
Zakres stron: 263 - 269
Otrzymano: 20 May 2020
Przyjęty: 17 Jun 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-890X
Pierwsze wydanie
14 Sep 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski

Anonymous (2012). Commission Regulation (EU) No 231/2012. Official Journal of the European Union, 55, 1–300.Search in Google Scholar

Argenta, A. B., Scheer, A. D. P. (2020). Membrane separation processes applied to whey: A Review. Food Rev. Int., 36 (5), 499–528.10.1080/87559129.2019.1649694Search in Google Scholar

Barile, D., Tao, N., Lebrilla, C. B., Coisson, J. D., Arlorio, M., German, J. B. (2009). Permeate from cheese whey ultrafiltration is a source of milk oligosaccharides. Int. Dairy J., 19 (9), 524–530.10.1016/j.idairyj.2009.03.008280500420161544Search in Google Scholar

Chandrapala, J., Chen, G. Q., Kezia, K., Bowman, E. G., Vasiljevic, T., Kentish, S. E. (2016). Removal of lactate from acid whey using nanofiltration. J. Food Eng., 177, 59–64.10.1016/j.jfoodeng.2015.12.019Search in Google Scholar

Chandrapala, J., Duke, M. C., Gray, S. R., Zisu, B., Weeks, M., Palmer, M., Vasiljevic, T. (2015). Properties of acid whey as a function of pH and temperature. J. Dairy Sci., 98 (7), 4352–4363.10.3168/jds.2015-943525958284Search in Google Scholar

Das, R., Sen, D., Sarkar, A., Bhattacharyya, S., Bhattacharjee, C. (2011). A comparative study on the production of galacto-oligosaccharide from whey permeate in recycle membrane reactor and in enzymatic batch reactor. Ind. Eng. Chem. Res., 50 (2), 806–816.10.1021/ie1016333Search in Google Scholar

Demirhan, I. N., Kilic, D., Ozbek, B. (2008). Product inhibition of whey lactose hydrolysis. Chem. Eng. Commun., 195 (3), 293–304.Search in Google Scholar

Jurado, E., Camacho, F., Luzón, G., Vicaria, J. M. (2004). Kinetic models of activity for ß-galactosidases: Influence of pH, ionic concentration and temperature. Enzyme. Microb. Tech., 34 (1), 33–40.10.1016/j.enzmictec.2003.07.004Search in Google Scholar

Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A., Huber, G. W. (2018). Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chem., 20 (8), 1824–1834.10.1039/C8GC00517FSearch in Google Scholar

Mano, M. C. R., Paulino, B. N., Pastore, G. M. (2019). Whey permeate as the raw material in galacto-oligosaccharide synthesis using commercial enzymes. Food Res. Int., 124, 78–85.10.1016/j.foodres.2018.09.01931466653Search in Google Scholar

Martínez-Villaluenga, C., Cardelle-Cobas, A., Corzo, N., Olano, A., Villamiel, M. (2008). Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by ß-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chem., 107 (1), 258–264.10.1016/j.foodchem.2007.08.011Search in Google Scholar

Meng, H., Li, D., Zhu, C. (2018). The effect of ultrasound on the properties and conformation of glucoamylase. Int. J. Biol. Macromol., 113, 411–417.10.1016/j.ijbiomac.2018.02.12929476862Search in Google Scholar

Otieno, D. O. (2010). Synthesis of ß-galactooligosaccharides from lactose using microbial ß-galactosidases. Compr. Rev. Food Sci. F, 9 (5), 471–482.10.1111/j.1541-4337.2010.00121.x33467831Search in Google Scholar

Rajakala, P., Karthigai Selvi, P. (2006). The effect of pH, temperature and alkali metal ions on the hydrolsis of whey lactose catalysed by ß-galactosidase from Kluyveromyces marxianus. Int. J. Dairy Sci., 1, 167–172.10.3923/ijds.2006.167.172Search in Google Scholar

Rios, N. S., Pinheiro, B. B., Pinheiro, M. P., Bezerra, R. M., dos Santos, J. C. S., Barros Gonçalves, L. R. (2018). Biotechnological potential of lipases from Pseudomonas: Sources, properties and applications. Process Biochem., 75, 99–120.10.1016/j.procbio.2018.09.003Search in Google Scholar

Rodriguez-Colinas, B., Fernandez-Arrojo, L., Ballesteros, A. O., Plou, F. J. (2014). Galactooligosaccharides formation during enzymatic hydrolysis of lactose: Towards a prebiotic-enriched milk. Food Chem., 145, 388–394.10.1016/j.foodchem.2013.08.06024128493Search in Google Scholar

Sady, M., Yna Jaworska, G., Grega, T., Bernas, E., Bernas, B., Domagaí, J. (2013). Application of acid whey in orange drink production. Food Technol. Biotech., 51 (2), 266–277.Search in Google Scholar

Sankarraj, N., Nallathambi, G. (2018). Enzymatic biopolishing of cotton fabric with free/immobilized cellulase. Carbohydr. Polym., 191, 95–102.10.1016/j.carbpol.2018.02.06729661327Search in Google Scholar

Tanguya, G., Tuler-Perrone, I., Dolivet, A., Santellani, A. C., Leduc, A., Jeantet, R., Schuck, P., Gaucheron, F. (2018). Calcium citrate insolubilization drives the fouling of falling film evaporators during the concentration of hydrochloric acid whey. Food Res. Int., 116 (April), 175–183.Search in Google Scholar

Sampaio, F. C., de Faria, J. T., da Silva, M. F., de Souza Oliveira, R. P., Converti, A. (2019). Cheese whey permeate fermentation by Kluyveromyces lactis: A combined approach to wastewater treatment and bioethanol production. Environ. Technol., 1–9, doi: 10.1080/09593330.2019.1604813.10.1080/09593330.2019.160481330955482Search in Google Scholar

Saqib, S., Akram, A., Halim, S. A., Tassaduq, R. (2017). Sources of ß-galactosidase and its applications in food industry. 3 Biotech, 7 (1), 1–7.Search in Google Scholar

Soares, A. de S., Augusto, P. E. D., Leite Júnior, B. R. de C., Nogueira, C. A., Vieira, É. N. R., de Barros, F. A. R., Stringheta, P. C., Ramos, A. M. (2019). Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT (Lebensmittel-Wissenschaft & Technologie), 107, 164–170.10.1016/j.lwt.2019.02.083Search in Google Scholar

Vasileva, N., Ivanov, Y., Damyanova, S., Kostova, I., Godjevargova, T. (2016). Hydrolysis of whey lactose by immobilized ß-galactosidase in a bioreactor with a spirally wound membrane. Int. J. Biol. Macromol., 82, 339–346.10.1016/j.ijbiomac.2015.11.02526586589Search in Google Scholar

Wang, X., Duan, D., Fu, X. (2016). Enzymatic desulfation of the red seaweeds agar by Marinomonas arylsulfatase. Int. J. Biol. Macromol., 93, 600–608.10.1016/j.ijbiomac.2016.08.03127521846Search in Google Scholar

Wronkowska, M., Juúkiewicz, J., Zduńczyk, Z., Warechowski, J., Soral-Úmietana, M., Jadacka, M. (2018). Effect of high added-value components of acid whey on the nutritional and physiological indices of rats. J. Funct. Foods, 50, 63–70.10.1016/j.jff.2018.09.019Search in Google Scholar

Zolnere, K., Ciprovica, I. (2019). Lactose hydrolysis in different solids content whey and milk permeates. In: Proceedings of the 13th Baltic Conference on Food Science and Technology FOODBALT 2019 joined with 5th North and East European Congress on Food NEEFood 2019, May 2–3, 2019, Jelgava, Latvia, pp. 35–39.10.22616/FoodBalt.2019.011Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo