1. bookTom 74 (2020): Zeszyt 4 (August 2020)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-890X
Pierwsze wydanie
14 Sep 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski
Otwarty dostęp

Physiological Performance of a Coastal Marsh Plant Hydrocotyle vulgaris in Natural Conditions in Relation to Mineral Nutrition and Mycorrhizal Symbiosis

Data publikacji: 22 Sep 2020
Tom & Zeszyt: Tom 74 (2020) - Zeszyt 4 (August 2020)
Zakres stron: 252 - 262
Otrzymano: 22 Nov 2018
Przyjęty: 17 Sep 2019
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2255-890X
Pierwsze wydanie
14 Sep 2008
Częstotliwość wydawania
6 razy w roku
Języki
Angielski

Aerts, R., Chapin, F. S. III (2000). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv. Ecol. Res., 30, 1–67.Search in Google Scholar

Andersone, U., Druva-Lūsite, I., Ieviņa, B., Karlsons, A., Ņečajeva, J., Samsone, I., Ievinsh, G. (2011). The use of nondestructive methods to assess a physiological status and conservation perspectives of Eryngium maritimum L. J. Coastal. Conserv., 15, 509–522.10.1007/s11852-010-0139-7Search in Google Scholar

Blokhina, O., Vorlainen, E., Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot., 91, 179–194.10.1093/aob/mcf118Search in Google Scholar

Chapin, F. S. III (1980). The mineral nutrition of wild plants. Annu. Rev. Evol. Syst., 11, 233–260.10.1146/annurev.es.11.110180.001313Search in Google Scholar

Dawe, C. E., Reekie, E. G. (2007). The effects of flooding regime on the rare Atlantic coastal plain species Hydrocotyle umbellata. Can. J. Bot., 85, 167–174.10.1139/B07-008Search in Google Scholar

Druva-Lūsīte, I., Karlsons, A., Osvalde, A., Ņečajeva, J., Ievinsh, G. (2008). Photosynthetic performance and mycorrhizal symbiosis of a coastal marsh plant, Glaux maritima, in conditions of fluctuating soil salinity. Acta Univ. Latv., 745, 155–164.Search in Google Scholar

Evans, J. P., Whitney, S. (1992). Clonal integration across a salt gradient by a nonhalophyte, Hydrocotyle bonariensis (Apiaceae). Amer. J. Bot., 79, 1344–1347.10.1002/j.1537-2197.1992.tb13743.xSearch in Google Scholar

Fair, J. M., Breshears, D. D. (2005). Drought stress and fluctuating asymmetry in Quercus undulata leaves: Confounding effects of absolute and relative amounts of stress? J. Arid Environ., 62, 235–249.10.1016/j.jaridenv.2004.11.010Search in Google Scholar

Gamage, H. K., Singhakumara, B. M. P., Ashton, M. S. (2004). Effects of light and fertilization on arbuscular mycorrhizal colonization and growth of tropical rain-forest Syzygium tree seedlings. J. Tropical Ecol., 20, 525–534.10.1017/S0266467404001592Search in Google Scholar

Giri, B., Kapoor, R., Mukerji, K. G. (2003). Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. Biol. Fertil. Soils, 38, 170–175.10.1007/s00374-003-0636-zSearch in Google Scholar

Hayman, D. S. (1970). Endogone spore numbers in soil and vesicular-arbuscular mycorrhiza in wheat as influenced by season and soil treatment. Transact. Brit. Mycol. Soc.,54, 53–63.10.1016/S0007-1536(70)80123-1Search in Google Scholar

Hirrel, M. C., Gerdemann, J. W. (1980). Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Soil Sci. Soc. Amer. J.,44, 654–655.10.2136/sssaj1980.03615995004400030046xSearch in Google Scholar

Ievinsh, G., (2006). Biological basis of biological diversity: Physiological adaptations of plants to heterogeneous habitats along a sea coast. Acta Univ. Latv., 710, 53–79.Search in Google Scholar

Ipsilantis, I., Sylvia, D. M. (2007). Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Appl. Soil Ecol., 35, 261–271.10.1016/j.apsoil.2006.09.003Search in Google Scholar

Javot, H., Pumplin, N., Harrison, M. J. (2007). Phosphate in the arbuscular mycorrhizal symbiosis: Transport properties and regulatory roles. Plant Cell Environ., 30, 310–322.10.1111/j.1365-3040.2006.01617.x17263776Search in Google Scholar

Juniper, S., Abbott, L. K. (2006). Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza, 16, 371–379.10.1007/s00572-006-0046-916525784Search in Google Scholar

Karlsons, A., Osvalde, A., Necajeva, J., Ievinsh, G. (2008). Changes of nutritional status of coastal plants Hydrocotyle vulgaris and Aster tripolium at elevated soil salinity. Acta Univ. Latv., 745, 165–177.Search in Google Scholar

Knight, T. M., Miller, T. E. (2004). Local adaptation within a population of Hydrocotyle bonariensis. Evol. Ecol. Res.,6, 103–114.Search in Google Scholar

Lusk, J. M., Reekie, E. G. (2007). The effect of growing season length and water level fluctuations on growth and survival of two rare and at risk Atlantic Coastal Plain flora species, Coreopsis rosea and Hydrocotyle umbellata. Can. J. Bot.,85, 119–131.10.1139/B06-158Search in Google Scholar

Maxwell, K., Johnson, G. N. (2000). Chlorophyll fluorescence — a practical guide. J. Exp. Bot.,51, 659–668.10.1093/jexbot/51.345.659Search in Google Scholar

Moriuchi, K. S., Winn, A. A. (2005). Relationships among growth, development and plastic response to environment quality in a perennial plant. New Phytol., 166, 149–158.10.1111/j.1469-8137.2005.01346.x15760359Search in Google Scholar

Packham, J. R., Willis, A. J. (1997). Ecology of Dunes, Salt Marsh and Shingle. Chapman & Hall, London. 336 pp.Search in Google Scholar

Peterson, A. G., Chesson, P. (2002). Short-term fitness benefits of physiological integration in the clonal herb Hydrocotyle peduncularis. Austral Ecol., 27, 647–657.10.1046/j.1442-9993.2002.01219.xSearch in Google Scholar

Pukacki, P. M., Kamińska-Rożek, E. (2005). Effect of drought stress on chlorophyll a fluorescence and electrical admittance of shoots in Norway spruce seedlings. Trees, 19, 539–544.10.1007/s00468-005-0412-9Search in Google Scholar

Redondo-Gómez, S., Wharmby, C., Castillo, J. M., Mateos-Naranjo, E., Luque, C. J., de Cires, A., Luque, T., Davy, A. J., Figueroa, M. E. (2006). Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol. Plant., 128, 116–124.10.1111/j.1399-3054.2006.00719.xSearch in Google Scholar

Roiloa, S. R., Retuerto, R. (2006). Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Ann. Bot., 98, 1043–1052.10.1093/aob/mcl185280359916987921Search in Google Scholar

Rozema, J., Luppes, E., Broekman, R. (1985). Differential response of salt-marsh species to variation of iron and manganese. Vegetatio, 62, 293–301.10.1007/BF00044756Search in Google Scholar

Samsone, I., Andersone, U., Vikmane, M., Ieviņa, B., Pakarna, G., Ievinsh, G. (2007). Nondestructive methods in plant biology: An accurate measurement of chlorophyll content by a chlorophyll meter. Acta Univ. Latv., 723, 145–154.Search in Google Scholar

Samsone, I., Druva-Lūsīte, I., Andersone, U., Ņečajeva, J., Karlsons, A., Ievinsh, G. (2009). Plasticity of a dune plant Alyssum gmelinii in response to sand burial in natural conditions. Acta Univ. Latv., 753, 125–136.Search in Google Scholar

Singer, C. E., Havill, D. C. (1985). Manganese as an ecological factor in salt marshes. Vegetatio, 62, 287–292.10.1007/BF00044755Search in Google Scholar

Teskey, R. O., Sheriff, D. W., Hollinger, D. Y., Thomas, R. B. (1995). External and internal factors regulating photosynthesis. In: Smith, W. K., Hinckely, T. M. (eds.). Resource Physiology of Conifers: Acquisition, Allocation, and Utilization. Academic Press, pp. 105–140.10.1016/B978-0-08-092591-2.50009-1Search in Google Scholar

Trouvelot, A., Kough, J. L., Gianinazzi-Pearson, V. (1986). Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de mčthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson, V., Gianinazzi, S. (eds.). Physiological and Genetical Aspects of Mycorrhizae. INRA Press, Paris, pp. 217–221.Search in Google Scholar

Ungar, I. A. (1998). Are biotic factors significant in influencing the distribution of halophytes in saline habitats? Bot. Rev., 64, 176–199.Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo