Otwarty dostęp

A review of emerging trends in experimental, simulation, and theoretical methods for dose calculation in radiation processing

, , , ,  oraz   
22 sie 2025

Zacytuj
Pobierz okładkę

Colletti, A. C., Denoya, G. I., Vaudagna, S. R., & Polenta, G. A. (2024). Novel applications of gamma irradiation on fruit processing. Curr. Food Sci. Technol. Rep., 2(1), 55–64. https://doi.org/10.1007/s43555-024-00016-w. CollettiA. C. DenoyaG. I. VaudagnaS. R. PolentaG. A. 2024 Novel applications of gamma irradiation on fruit processing Curr. Food Sci. Technol. Rep. 2 1 55 64 https://doi.org/10.1007/s43555-024-00016-w. Search in Google Scholar

Bisht, B., Bhatnagar, P., Gururani, P., Kumar, V., Tomar, M. S., Sinhmar, R., Rathi, N., & Kumar, S. (2021). Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends Food Sci. Technol., 114, 372–385. https://doi.org/10.1016/j.tifs.2021.06.002. BishtB. BhatnagarP. GururaniP. KumarV. TomarM. S. SinhmarR. RathiN. KumarS. 2021 Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review Trends Food Sci. Technol. 114 372 385 https://doi.org/10.1016/j.tifs.2021.06.002. Search in Google Scholar

Chaudhary, S., Kumar, S., Kumar, V., Singh, B., & Dhiman, A. (2024). Irradiation: A tool for the sustainability of fruit and vegetable supply chain–advancements and future trends. Radiat. Phys. Chem., 217, 111511. https://doi.org/10.1016/j.radphyschem.2024.111511. ChaudharyS. KumarS. KumarV. SinghB. DhimanA. 2024 Irradiation: A tool for the sustainability of fruit and vegetable supply chain–advancements and future trends Radiat. Phys. Chem. 217 111511 https://doi.org/10.1016/j.radphyschem.2024.111511. Search in Google Scholar

Li, D., Bisel, T. T., Cooley, S. K., Ni, Y., Murphy, M. K., Spencer, M. P., Hasan, Md K., Fifield, L. S., Pharr, M., Staack, D., Huang, M., Pillai, S. D., Nichols, L., Parker, R., & Gustin, E. (2025). Gamma, electron beam and X-ray irradiation effects on polymers in an advanced bone cement mixer device. Radiat. Phys. Chem., 226, 112188. https://doi.org/10.1016/j.radphyschem.2024.112188. LiD. BiselT. T. CooleyS. K. NiY. MurphyM. K. SpencerM. P. HasanMd K. FifieldL. S. PharrM. StaackD. HuangM. PillaiS. D. NicholsL. ParkerR. GustinE. 2025 Gamma, electron beam and X-ray irradiation effects on polymers in an advanced bone cement mixer device Radiat. Phys. Chem. 226 112188 https://doi.org/10.1016/j.radphyschem.2024.112188. Search in Google Scholar

Akter, H., Cunningham, N., Rempoulakis, P., & Bluml, M. (2023). An overview of phytosanitary irradiation requirements for Australian pests of quarantine concern. Agriculture, 13(4), 1–15. https://doi.org/10.3390/agriculture13040771. AkterH. CunninghamN. RempoulakisP. BlumlM. 2023 An overview of phytosanitary irradiation requirements for Australian pests of quarantine concern Agriculture 13 4 1 15 https://doi.org/10.3390/agriculture13040771. Search in Google Scholar

Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359. https://doi.org/10.1016/j.foodcont.2016.03.011. IhsanullahI. RashidA. 2017 Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries Food Control 72 345 359 https://doi.org/10.1016/j.foodcont.2016.03.011. Search in Google Scholar

Kuntz, F., & Strasser, A. (2016). The specifics of dosimetry for food irradiation applications. Radiat. Phys. Chem., 129, 46–49. KuntzF. StrasserA. 2016 The specifics of dosimetry for food irradiation applications Radiat. Phys. Chem. 129 46 49 Search in Google Scholar

Majer, M., Pasariček, L., & Knežević, Ž. (2024). Dose mapping of the 60Co gamma irradiation facility and a real irradiated product – Measurements and Monte Carlo simulation. Radiat. Phys. Chem., 214, 111280. MajerM. PasaričekL. KneževićŽ. 2024 Dose mapping of the 60Co gamma irradiation facility and a real irradiated product – Measurements and Monte Carlo simulation Radiat. Phys. Chem. 214 111280 Search in Google Scholar

Saputro, B., Saputro, A. H., & Nuraeni, N. (2024). A Monte Carlo approach for predictive tools in gamma irradiator: a review. J. Radioanal. Nucl. Chem., 0123456789. https://doi.org/10.1007/s10967-024-09871-2. SaputroB. SaputroA. H. NuraeniN. 2024 A Monte Carlo approach for predictive tools in gamma irradiator: a review J. Radioanal. Nucl. Chem. 0123456789. https://doi.org/10.1007/s10967-024-09871-2. Search in Google Scholar

Singh, M., Datta, D., & Gupta, A. (2023). Modelling and optimization of dosimeters in the product box for commissioning dosimetry at gamma irradiator using Voronoi Diagram algorithm. Radiat. Phys. Chem., 210, 111011. https://doi.org/10.1016/j.radphyschem.2023.111011. SinghM. DattaD. GuptaA. 2023 Modelling and optimization of dosimeters in the product box for commissioning dosimetry at gamma irradiator using Voronoi Diagram algorithm Radiat. Phys. Chem. 210 111011 https://doi.org/10.1016/j.radphyschem.2023.111011. Search in Google Scholar

Rivadeneira, R., Kim, J., Huang, Y., Castell-Perez, M. E., & Moreira, R. (2007). A 3-D dosimeter for complex-shaped foods using electron-beam irradiation. Am. Soc. Agric. Biol. Eng., 50(5), 1751–1758. RivadeneiraR. KimJ. HuangY. Castell-PerezM. E. MoreiraR. 2007 A 3-D dosimeter for complex-shaped foods using electron-beam irradiation Am. Soc. Agric. Biol. Eng. 50 5 1751 1758 Search in Google Scholar

Andreo, P. (1991). Monte Carlo techniques in medical radiation physics. Phys. Med. Biol., 36(7), 861–920. AndreoP. 1991 Monte Carlo techniques in medical radiation physics Phys. Med. Biol. 36 7 861 920 Search in Google Scholar

Andreo, P. (2018). Monte Carlo simulations in radiotherapy dosimetry. Radiat. Oncol., 13(1), 1–15. https://doi.org/10.1186/s13014-018-1065-3. AndreoP. 2018 Monte Carlo simulations in radiotherapy dosimetry Radiat. Oncol. 13 1 1 15 https://doi.org/10.1186/s13014-018-1065-3. Search in Google Scholar

Moradi, F., Khandaker, M. U., Mahdiraji, G. A., Ung, N. M., & Bradley, D. A. (2017). Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation. Radiat. Phys. Chem., 140, 107–111. https://doi.org/10.1016/j.radphyschem.2017.01.032. MoradiF. KhandakerM. U. MahdirajiG. A. UngN. M. BradleyD. A. 2017 Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation Radiat. Phys. Chem. 140 107 111 https://doi.org/10.1016/j.radphyschem.2017.01.032. Search in Google Scholar

Belkadhi, K., Elhamdi, K., Bhar, M., & Manai, K. (2017). Dose calculation using Haar wavelets with buildup correction. Appl. Radiat. Isot., 127, 186–194. https://doi.org/10.1016/j.apradiso.2017.06.011. BelkadhiK. ElhamdiK. BharM. ManaiK. 2017 Dose calculation using Haar wavelets with buildup correction Appl. Radiat. Isot. 127 186 194 https://doi.org/10.1016/j.apradiso.2017.06.011. Search in Google Scholar

Zolotov, S. A., Bliznyuk, U. A., Studenikin, F. R., Borshchegovskaya, P. Y., & Krusanov, G. A. (2023). Combination of aluminum plates of different thicknesses to increase the homogeneity of radiation treatment by accelerated electrons. Phys. Part. Nucl. Lett., 20(4), 954–958. ZolotovS. A. BliznyukU. A. StudenikinF. R. BorshchegovskayaP. Y. KrusanovG. A. 2023 Combination of aluminum plates of different thicknesses to increase the homogeneity of radiation treatment by accelerated electrons Phys. Part. Nucl. Lett. 20 4 954 958 Search in Google Scholar

Knoll, G. F. (2010). Radiation detection and measurement (4th ed.). John Wiley & Sons. KnollG. F. 2010 Radiation detection and measurement 4th ed. John Wiley & Sons Search in Google Scholar

Renaud, J., Palmans, H., Sarfehnia, A., & Seuntjens, J. (2020). Absorbed dose calorimetry. Phys. Med. Biol., 65(5), 05TR02. DOI: 10.1088/1361-6560/ab4f29. RenaudJ. PalmansH. SarfehniaA. SeuntjensJ. 2020 Absorbed dose calorimetry Phys. Med. Biol. 65 5 05TR02 10.1088/1361-6560/ab4f29 Open DOISearch in Google Scholar

McEwen, M. R., Sharpe, P. H. G., Pazos, I. M., Miller, A., Pawlak, E., Ninlaphruk, S., Zhang, Y., & Kessler, C. (2022). Supplementary comparison CCRI(I)-S3 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels. Metrologia, 59(1A), 1–18. DOI: 10.1088/0026-1394/59/1A/06012. McEwenM. R. SharpeP. H. G. PazosI. M. MillerA. PawlakE. NinlaphrukS. ZhangY. KesslerC. 2022 Supplementary comparison CCRI(I)-S3 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels Metrologia 59 1A 1 18 10.1088/0026-1394/59/1A/06012 Open DOISearch in Google Scholar

Muir, B. R., Cojocaru, C. D., McEwen, M. R., & Ross, C. K. (2017). Electron beam water calorimetry measurements to obtain beam quality conversion factors. Med. Phys., 44(10), 5433–5444. MuirB. R. CojocaruC. D. McEwenM. R. RossC. K. 2017 Electron beam water calorimetry measurements to obtain beam quality conversion factors Med. Phys. 44 10 5433 5444 Search in Google Scholar

Miller, A. (1995). Polystyrene calorimeter for electron beam dose measurements. Radiat. Phys. Chem., 46(4/6), 1243–1246. MillerA. 1995 Polystyrene calorimeter for electron beam dose measurements Radiat. Phys. Chem. 46 4/6 1243 1246 Search in Google Scholar

Miller, A., & Kovacs, A. (1990). Application of calorimeters for routine and reference dosimetry at 4–10 MeV industrial electron accelerators. Radiat. Phys. Chem., 35, 774–778. MillerA. KovacsA. 1990 Application of calorimeters for routine and reference dosimetry at 4–10 MeV industrial electron accelerators Radiat. Phys. Chem. 35 774 778 Search in Google Scholar

Miller, A., Kovacs, A., & Kuntz, F. (2002). Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV. Radiat. Phys. Chem., 63, 739–744. MillerA. KovacsA. KuntzF. 2002 Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV Radiat. Phys. Chem. 63 739 744 Search in Google Scholar

ISO/ASTM International. (2013). ISO/ASTM 51631: Practice for use of calorimetric dosimetry systems for electron beam dose measurements and routine dosimetry system calibration. ISO/ASTM International 2013 ISO/ASTM 51631: Practice for use of calorimetric dosimetry systems for electron beam dose measurements and routine dosimetry system calibration Search in Google Scholar

International Atomic Energy Agency. (2002). Dosimetry for food irradiation. Vienna: IAEA. (TRS no. 409). International Atomic Energy Agency 2002 Dosimetry for food irradiation Vienna IAEA (TRS no. 409). Search in Google Scholar

Secerov, B., Radenkovic, M., & Dramicanin, M. (2016). Uncertainty and routine use of aerial L-alanine – electron spin resonance dosimetry system. Radiat. Meas., 89, 63–67. https://doi.org/10.1016/j.radmeas.2016.03.003. SecerovB. RadenkovicM. DramicaninM. 2016 Uncertainty and routine use of aerial L-alanine – electron spin resonance dosimetry system Radiat. Meas. 89 63 67 https://doi.org/10.1016/j.radmeas.2016.03.003. Search in Google Scholar

Yang, Z., Vrielinck, H., Jacobsohn, L. G., Smet, P. F., & Poelman, D. (2024). Passive dosimeters for radiation dosimetry: Materials, mechanisms, and applications. Adv. Funct. Mater., 34(41), 2406186. https://doi.org/10.1002/adfm.202406186. YangZ. VrielinckH. JacobsohnL. G. SmetP. F. PoelmanD. 2024 Passive dosimeters for radiation dosimetry: Materials, mechanisms, and applications Adv. Funct. Mater. 34 41 2406186 https://doi.org/10.1002/adfm.202406186. Search in Google Scholar

Mahdiraji, G. A., Ghomeishi, M., Dermosesian, E., Hashim, S., Ung, N. M., Adikan, F. R. M., & Bradley, D. A. (2015). Optical fiber based dosimeter sensor: Beyond TLD-100 limits. Sens. Actuators A-Phys., 222, 48–57. https://doi.org/10.1016/j.sna.2014.11.017. MahdirajiG. A. GhomeishiM. DermosesianE. HashimS. UngN. M. AdikanF. R. M. BradleyD. A. 2015 Optical fiber based dosimeter sensor: Beyond TLD-100 limits Sens. Actuators A-Phys. 222 48 57 https://doi.org/10.1016/j.sna.2014.11.017. Search in Google Scholar

Oresegun, A., Basaif, A., Tarif, Z. H., Abdul-Rashid, H. A., Hashim, S. A., & Bradley, D. A. (2021). Radioluminescence of silica optical fibre scintillators for real-time industrial radiation dosimetry. Radiat. Phys. Chem., 188, 109684. https://doi.org/10.1016/j.radphyschem.2021.109684. OresegunA. BasaifA. TarifZ. H. Abdul-RashidH. A. HashimS. A. BradleyD. A. 2021 Radioluminescence of silica optical fibre scintillators for real-time industrial radiation dosimetry Radiat. Phys. Chem. 188 109684 https://doi.org/10.1016/j.radphyschem.2021.109684. Search in Google Scholar

Schuster, C., Kuntz, F., Strasser, A., Härtling, T., Dornich, K., & Richter, D. (2021). 3D relative dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 180, 109238. SchusterC. KuntzF. StrasserA. HärtlingT. DornichK. RichterD. 2021 3D relative dose measurement with a μm thin dosimetric layer Radiat. Phys. Chem. 180 109238 Search in Google Scholar

Schuster, C., Kuntz, F., Cloetta, D., Zeller, M., Katzmann, J., Strasser, A., Härtling, T., & Lavalle, M. (2022). Depth dose curve and surface dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 193, 109881. https://doi.org/10.1016/j.radphyschem.2021.109881. SchusterC. KuntzF. CloettaD. ZellerM. KatzmannJ. StrasserA. HärtlingT. LavalleM. 2022 Depth dose curve and surface dose measurement with a μm thin dosimetric layer Radiat. Phys. Chem. 193 109881 https://doi.org/10.1016/j.radphyschem.2021.109881. Search in Google Scholar

Rabaeh, K. A., Aljammal, S. A., Eyadeh, M. M., & Abumurad, K. M. (2021). Methyl thymol blue solution and film dosimeter for high dose measurements. Results Phys., 23, 103980. https://doi.org/10.1016/j.rinp.2021.103980. RabaehK. A. AljammalS. A. EyadehM. M. AbumuradK. M. 2021 Methyl thymol blue solution and film dosimeter for high dose measurements Results Phys. 23 103980 https://doi.org/10.1016/j.rinp.2021.103980. Search in Google Scholar

Soliman, Y. S., Abdel-Fattah, A. A., & Alkhuraiji, T. S. (2018). Radiochromic film containing poly(hexa-2,4-diynylene adipate) as a radiation dosimeter. Appl. Radiat. Isot., 141, 80–87. https://doi.org/10.1016/j.apradiso.2018.08.016. SolimanY. S. Abdel-FattahA. A. AlkhuraijiT. S. 2018 Radiochromic film containing poly(hexa-2,4-diynylene adipate) as a radiation dosimeter Appl. Radiat. Isot. 141 80 87 https://doi.org/10.1016/j.apradiso.2018.08.016. Search in Google Scholar

Rachmanto, A., Putri, M. A. E., Yunus, M. Y., Yunus, L., Fitriana, R., & Rahmawati, R. (2024). ESR spectroscopic analysis of fructose as a dosimeter for gamma radiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 557, 165551. https://doi.org/10.1016/j.nimb.2024.165551. RachmantoA. PutriM. A. E. YunusM. Y. YunusL. FitrianaR. RahmawatiR. 2024 ESR spectroscopic analysis of fructose as a dosimeter for gamma radiation Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 557 165551 https://doi.org/10.1016/j.nimb.2024.165551. Search in Google Scholar

Al-Ghamdi, H., Farah, K., Almuqrin, A., & Hosni, F. (2022). FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements. Nucl. Eng. Technol., 54(1), 255–261. https://doi.org/10.1016/j.net.2021.07.023. Al-GhamdiH. FarahK. AlmuqrinA. HosniF. 2022 FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements Nucl. Eng. Technol. 54 1 255 261 https://doi.org/10.1016/j.net.2021.07.023. Search in Google Scholar

Khouqeer, G. A., Farah, K., Toumi, S., & Hosni, F. (2025). Electron paramagnetic resonance characterization of gamma and electron irradiated high-density polyethylene: Possible use as a high-dose dosimeter. Nucl. Eng. Technol., 103419. https://doi.org/10.1016/j.net.2024.103419. KhouqeerG. A. FarahK. ToumiS. HosniF. 2025 Electron paramagnetic resonance characterization of gamma and electron irradiated high-density polyethylene: Possible use as a high-dose dosimeter Nucl. Eng. Technol. 103419 https://doi.org/10.1016/j.net.2024.103419. Search in Google Scholar

Vaiano, P., Consales, M., Casolaro, P., Campajola, L., Fienga, F., Di Capua, F., Breglio, G., Buontempo, S., Cutolo, A., & Cusano, A. (2019). A novel method for EBT3 Gafchromic films read-out at high dose levels. Phys. Med., 61, 77–84. https://doi.org/10.1016/j.ejmp.2019.04.013. VaianoP. ConsalesM. CasolaroP. CampajolaL. FiengaF. Di CapuaF. BreglioG. BuontempoS. CutoloA. CusanoA. 2019 A novel method for EBT3 Gafchromic films read-out at high dose levels Phys. Med. 61 77 84 https://doi.org/10.1016/j.ejmp.2019.04.013. Search in Google Scholar

Nasreddine, A., Kuntz, F., & El Bitar, Z. (2021). Absorbed dose to water determination for kilo-voltage X-rays using alanine/EPR dosimetry systems. Radiat. Phys. Chem., 180, 108938. https://doi.org/10.1016/j.radphyschem.2020.108938. NasreddineA. KuntzF. El BitarZ. 2021 Absorbed dose to water determination for kilo-voltage X-rays using alanine/EPR dosimetry systems Radiat. Phys. Chem. 180 108938 https://doi.org/10.1016/j.radphyschem.2020.108938. Search in Google Scholar

Hjørringgaard, J. G., Ankjærgaard, C., Miller, A., & Andersen, C. E. (2023). Kilovoltage X-ray beam quality effect on the relative response of alanine pellet dosemeters. Radiat. Prot. Dosim., 199(14), 1605–1610. https://doi.org/10.1093/rpd/ncad008. HjørringgaardJ. G. AnkjærgaardC. MillerA. AndersenC. E. 2023 Kilovoltage X-ray beam quality effect on the relative response of alanine pellet dosemeters Radiat. Prot. Dosim. 199 14 1605 1610 https://doi.org/10.1093/rpd/ncad008. Search in Google Scholar

Beigzadeh, A. M., & Vaziri, M. R. R. (2021). Z-scan dosimetry of gamma-irradiated PMMA. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 991, 165022. https://doi.org/10.1016/j.nima.2021.165022. BeigzadehA. M. VaziriM. R. R. 2021 Z-scan dosimetry of gamma-irradiated PMMA Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ. 991 165022 https://doi.org/10.1016/j.nima.2021.165022. Search in Google Scholar

McEwen, M., Miller, A., Pazos, I., & Sharpe, P. (2020). Determination of a consensus scaling factor to convert a Co-60-based alanine dose reading to yield the dose delivered in a high energy electron beam. Radiat. Phys. Chem., 171, 108673. https://doi.org/10.1016/j.radphyschem.2019.108673. McEwenM. MillerA. PazosI. SharpeP. 2020 Determination of a consensus scaling factor to convert a Co-60-based alanine dose reading to yield the dose delivered in a high energy electron beam Radiat. Phys. Chem. 171 108673 https://doi.org/10.1016/j.radphyschem.2019.108673. Search in Google Scholar

Skowyra, M. M., Ankjærgaard, C., Yu, L., Lindvold, L. R., Skov, A. L., & Miller, A. (2022). Glass transition temperature of Risø B3 radiochromic film dosimeter and its importance on the post-irradiation heating procedure. Radiat. Phys. Chem., 194, 109982. https://doi.org/10.1016/j.radphyschem.2022.109982. SkowyraM. M. AnkjærgaardC. YuL. LindvoldL. R. SkovA. L. MillerA. 2022 Glass transition temperature of Risø B3 radiochromic film dosimeter and its importance on the post-irradiation heating procedure Radiat. Phys. Chem. 194 109982 https://doi.org/10.1016/j.radphyschem.2022.109982. Search in Google Scholar

Yamada, H., & Parker, A. (2022). Gafchromic TM MD-V3 and HD-V2 film response depends little on temperature at time of exposure. Radiat. Phys. Chem., 196, 1–7. YamadaH. ParkerA. 2022 Gafchromic TM MD-V3 and HD-V2 film response depends little on temperature at time of exposure Radiat. Phys. Chem. 196 1 7 Search in Google Scholar

Hjørringgaard, J. G., Ankjærgaard, C., Bailey, M., & Miller, A. (2020). Alanine pellet dosimeter efficiency in a 40 kV x-ray beam relative to cobalt-60. Radiat. Meas., 136, 106374. https://doi.org/10.1016/j.radmeas.2020.106374. HjørringgaardJ. G. AnkjærgaardC. BaileyM. MillerA. 2020 Alanine pellet dosimeter efficiency in a 40 kV x-ray beam relative to cobalt-60 Radiat. Meas. 136 106374 https://doi.org/10.1016/j.radmeas.2020.106374. Search in Google Scholar

Hjørringgaard, J. G., Ankjærgaard, C., & Andersen, C. E. (2022). The microdosimetric one-hit detector model for calculating the relative efficiency of the alanine pellet dosimeter in low energy X-ray beams. Radiat. Meas., 150, 106659. https://doi.org/10.1016/j.radmeas.2021.106659. HjørringgaardJ. G. AnkjærgaardC. AndersenC. E. 2022 The microdosimetric one-hit detector model for calculating the relative efficiency of the alanine pellet dosimeter in low energy X-ray beams Radiat. Meas. 150 106659 https://doi.org/10.1016/j.radmeas.2021.106659. Search in Google Scholar

Eychenne, L., Vander Stappen, F., Kuntz, F., Stichelbaut, F., Dossat, C., Robin-Chabanne, S., & Chatry, N. (2022). High energy X-ray fruit irradiation qualification with Monte Carlo code. Radiat. Phys. Chem., 195, 110075. https://doi.org/10.1016/j.radphyschem.2022.110075. EychenneL. Vander StappenF. KuntzF. StichelbautF. DossatC. Robin-ChabanneS. ChatryN. 2022 High energy X-ray fruit irradiation qualification with Monte Carlo code Radiat. Phys. Chem. 195 110075 https://doi.org/10.1016/j.radphyschem.2022.110075. Search in Google Scholar

Andreo, P., Burns, D. T., Kapsch, R. P., McEwen, M., Vatnitsky, S., Andersen, C. E., Ballester, F., Borbinha, J., Delaunay, F., Francescon, P., Hanlon, M. D., Mirzakhanian, L., Muir, B., Ojala, J., Oliver, C. P., Pimpinella, M., Pinto, M., de Prez, L. A., Seuntjens, J., Sommier, J., Teles, P., Tikkanen, J., Vijande, J., & Zink, K. (2020). Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398. Phys. Med. Biol., 65(9), 095011. https://doi.org/10.1088/1361-6560/ab807b. AndreoP. BurnsD. T. KapschR. P. McEwenM. VatnitskyS. AndersenC. E. BallesterF. BorbinhaJ. DelaunayF. FrancesconP. HanlonM. D. MirzakhanianL. MuirB. OjalaJ. OliverC. P. PimpinellaM. PintoM. de PrezL. A. SeuntjensJ. SommierJ. TelesP. TikkanenJ. VijandeJ. ZinkK. 2020 Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398 Phys. Med. Biol. 65 9 095011 https://doi.org/10.1088/1361-6560/ab807b. Search in Google Scholar

Bourgouin, A., Schüller, A., Hackel, T., & Kranzer, R. (2020). Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beams. Front. Phys., 8, 567340. https://doi.org/10.3389/fphy.2020.567340. BourgouinA. SchüllerA. HackelT. KranzerR. 2020 Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beams Front. Phys. 8 567340 https://doi.org/10.3389/fphy.2020.567340. Search in Google Scholar

Subiel, A., & Romano, F. (2023). Recent developments in absolute dosimetry for FLASH radiotherapy. Br. J. Radiol., 96(1148), 20220560. https://doi.org/10.1259/bjr.20220560. SubielA. RomanoF. 2023 Recent developments in absolute dosimetry for FLASH radiotherapy Br. J. Radiol. 96 1148 20220560 https://doi.org/10.1259/bjr.20220560. Search in Google Scholar

Van Hung, T., & Khac An, T. (2010). Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam. Appl. Radiat. Isot., 68(6), 1104–1107. https://doi.org/10.1016/j.apradiso.2010.01.023. Van HungT. Khac AnT. 2010 Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam Appl. Radiat. Isot. 68 6 1104 1107 https://doi.org/10.1016/j.apradiso.2010.01.023. Search in Google Scholar

Graves, S. A., Flynn, R. T., & Hyer, D. E. (2019). Dose point kernels for 2,174 radionuclides. Med. Phys., 46(11), 5284–5293. https://doi.org/10.1002/mp.13789. GravesS. A. FlynnR. T. HyerD. E. 2019 Dose point kernels for 2,174 radionuclides Med. Phys. 46 11 5284 5293 https://doi.org/10.1002/mp.13789. Search in Google Scholar

Papadimitroulas, P., Loudos, G., Nikiforidis, G. C., & Kagadis, G. C. (2012). A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes. Med. Phys., 39(8), 5238–5247. https://doi.org/10.1118/1.4737096. PapadimitroulasP. LoudosG. NikiforidisG. C. KagadisG. C. 2012 A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes Med. Phys. 39 8 5238 5247 https://doi.org/10.1118/1.4737096. Search in Google Scholar

Belchior, A., Botelho, M. L., Peralta, L., & Vaz, P. (2008). Dose mapping of a 60Co irradiation facility using PENELOPE and MCNPX and its validation by chemical dosimetry. Appl. Radiat. Isot., 66(4), 435–440. https://doi.org/10.1016/j.apradiso.2007.11.017. BelchiorA. BotelhoM. L. PeraltaL. VazP. 2008 Dose mapping of a 60Co irradiation facility using PENELOPE and MCNPX and its validation by chemical dosimetry Appl. Radiat. Isot. 66 4 435 440 https://doi.org/10.1016/j.apradiso.2007.11.017. Search in Google Scholar

El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., & Benmessaoud, M. (2021). Monte Carlo simulation as a predictive tool to program a reloading operation of a gamma irradiator. Mosc. Univ. Phys. Bull., 76(6), 482–487. https://doi.org/10.3103/S0027134921060047. El-OuardiY. AknouchA. DadouchA. MouhibM. BenmessaoudM. 2021 Monte Carlo simulation as a predictive tool to program a reloading operation of a gamma irradiator Mosc. Univ. Phys. Bull. 76 6 482 487 https://doi.org/10.3103/S0027134921060047. Search in Google Scholar

Bailey, M., Sephton, J. P., & Sharpe, P. H. G. (2009). Monte Carlo modelling and real-time dosemeter measurements of dose rate distribution at a 60Co industrial irradiation plant. Radiat. Phys. Chem., 78(7/8), 453–456. https://doi.org/10.1016/j.radphyschem.2009.03.024. BaileyM. SephtonJ. P. SharpeP. H. G. 2009 Monte Carlo modelling and real-time dosemeter measurements of dose rate distribution at a 60Co industrial irradiation plant Radiat. Phys. Chem. 78 7/8 453 456 https://doi.org/10.1016/j.radphyschem.2009.03.024. Search in Google Scholar

Lazurik, V. T., Lazurik, V. M., Popov, G., Rogov, Y., & Zimek, Z. (2011). Information system and software for quality control of radiation processing. Warsaw: International Atomic Energy Agency; Institute of Nuclear Chemistry and Technology. LazurikV. T. LazurikV. M. PopovG. RogovY. ZimekZ. 2011 Information system and software for quality control of radiation processing Warsaw International Atomic Energy Agency; Institute of Nuclear Chemistry and Technology Search in Google Scholar

Schwarz, R., Salvat, F., Sunderland, D., Azuma, M., Boutros, C., Pillai, S., Kuntz, F., Nasreddine, A., Pagh, J., Wootan, D., & Murphy, M. K. (2024). PUFFIn – A user friendly fast interface for calculating and visualizing the dose distribution in materials. Radiat. Phys. Chem., 222, 111774. https://doi.org/10.1016/j.radphyschem.2024.111774. SchwarzR. SalvatF. SunderlandD. AzumaM. BoutrosC. PillaiS. KuntzF. NasreddineA. PaghJ. WootanD. MurphyM. K. 2024 PUFFIn – A user friendly fast interface for calculating and visualizing the dose distribution in materials Radiat. Phys. Chem. 222 111774 https://doi.org/10.1016/j.radphyschem.2024.111774. Search in Google Scholar

Rafiepour, P., Sina, S., & Javad Mortazavi, S. M. (2023). A multiscale Monte Carlo simulation of irradiating a typical-size apple by low-energy X-rays and electron beams. Radiat. Phys. Chem., 212, 111016. https://doi.org/10.1016/j.radphyschem.2023.111016. RafiepourP. SinaS. Javad MortazaviS. M. 2023 A multiscale Monte Carlo simulation of irradiating a typical-size apple by low-energy X-rays and electron beams Radiat. Phys. Chem. 212 111016 https://doi.org/10.1016/j.radphyschem.2023.111016. Search in Google Scholar

Iwamoto, Y., Sato, T., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuda, N., Hosoyamada, R., & Niita, K. (2017). Benchmark study of the recent version of the PHITS code. J. Nucl. Sci. Technol., 54(5), 617–635. https://doi.org/10.1080/00223131.2017.1297742. IwamotoY. SatoT. HashimotoS. OgawaT. FurutaT. AbeS. I. KaiT. MatsudaN. HosoyamadaR. NiitaK. 2017 Benchmark study of the recent version of the PHITS code J. Nucl. Sci. Technol. 54 5 617 635 https://doi.org/10.1080/00223131.2017.1297742. Search in Google Scholar

El-Ouardi, Y., Dadouch, A., Aknouch, A., Mouhib, M., Maghnouj, A., & Didi, A. (2020). Comparative study between Geant4, MCNP6 and experimental results against gamma radiation comes from a cobalt-60 source. Mosc. Univ. Phys. Bull., 75(5), 507–511. https://doi.org/10.3103/S0027134920050033. El-OuardiY. DadouchA. AknouchA. MouhibM. MaghnoujA. DidiA. 2020 Comparative study between Geant4, MCNP6 and experimental results against gamma radiation comes from a cobalt-60 source Mosc. Univ. Phys. Bull. 75 5 507 511 https://doi.org/10.3103/S0027134920050033. Search in Google Scholar

Moradi, F., Khandaker, M. U., Abdul Sani, S. F., Uguru, E. H., Sulieman, A., & Bradley, D. A. (2021). Feasibility study of a minibeam collimator design for a 60Co gamma irradiator. Radiat. Phys. Chem., 178, 109026. https://doi.org/10.1016/j.radphyschem.2020.109026. MoradiF. KhandakerM. U. Abdul SaniS. F. UguruE. H. SuliemanA. BradleyD. A. 2021 Feasibility study of a minibeam collimator design for a 60Co gamma irradiator Radiat. Phys. Chem. 178 109026 https://doi.org/10.1016/j.radphyschem.2020.109026. Search in Google Scholar

Aknouch, A., El-Ouardi, Y., Hamroud, L., Sebihi, R., Mouhib, M., Yjjou, M., Didi, A., & Choukri, A. (2021). A Monte Carlo study to investigate the feasibility to use the Moroccan panoramic irradiator in sterile insect technique programs. Radiat. Environ. Biophys., 60(4), 673–679. https://doi.org/10.1007/s00411-021-00934-6. AknouchA. El-OuardiY. HamroudL. SebihiR. MouhibM. YjjouM. DidiA. ChoukriA. 2021 A Monte Carlo study to investigate the feasibility to use the Moroccan panoramic irradiator in sterile insect technique programs Radiat. Environ. Biophys. 60 4 673 679 https://doi.org/10.1007/s00411-021-00934-6. Search in Google Scholar

Saputro, B., Saputro, A. H., Nuraeni, N., Prasetio, H., Firmansyah, O. A., Fendinugroho, & Mayditia, H. (2024). Monte Carlo simulation as precision predictive tools to find isodose curve of gamma irradiator: A preliminary study. Indones. J. Appl. Phys., 14(2), 386. https://doi.org/10.13057/ijap.v14i2.93092. SaputroB. SaputroA. H. NuraeniN. PrasetioH. FirmansyahO. A. Fendinugroho MayditiaH. 2024 Monte Carlo simulation as precision predictive tools to find isodose curve of gamma irradiator: A preliminary study Indones. J. Appl. Phys. 14 2 386 https://doi.org/10.13057/ijap.v14i2.93092. Search in Google Scholar

Cao, V. C., Vo, A. T., Le, Q. T., Le, N. T., Duong, T. H., & Tran, H. N. (2021). Depth-dose profiles in continuous and discontinuous materials of food products and medical devices irradiated by 10 MeV electron beam. J. Radioanal. Nucl. Chem., 330(3), 609–617. https://doi.org/10.1007/s10967-021-07985-5. CaoV. C. VoA. T. LeQ. T. LeN. T. DuongT. H. TranH. N. 2021 Depth-dose profiles in continuous and discontinuous materials of food products and medical devices irradiated by 10 MeV electron beam J. Radioanal. Nucl. Chem. 330 3 609 617 https://doi.org/10.1007/s10967-021-07985-5. Search in Google Scholar

Kroc, T. K. (2023). Monte Carlo simulations demonstrating physics of equivalency of gamma, electronbeam, and X-ray for radiation sterilization. Radiat. Phys. Chem., 204, 110702. https://doi.org/10.1016/j.radphyschem.2022.110702. KrocT. K. 2023 Monte Carlo simulations demonstrating physics of equivalency of gamma, electronbeam, and X-ray for radiation sterilization Radiat. Phys. Chem. 204 110702 https://doi.org/10.1016/j.radphyschem.2022.110702. Search in Google Scholar

Jung, S. T., Pyo, S. H., Kang, W. G., Kim, Y. R., Kim, J. K., Kang, C. M., Nho, Y. C., & Park, J. S. (2021). Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam. Radiat. Phys. Chem., 186, 109506. https://doi.org/10.1016/j.radphyschem.2021.109506. JungS. T. PyoS. H. KangW. G. KimY. R. KimJ. K. KangC. M. NhoY. C. ParkJ. S. 2021 Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam Radiat. Phys. Chem. 186 109506 https://doi.org/10.1016/j.radphyschem.2021.109506. Search in Google Scholar

Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2010). Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatment. J. Food Eng., 97(3), 425–433. https://doi.org/10.1016/j.jfoodeng.2009.10.038. KimJ. MoreiraR. G. Castell-PerezM. E. 2010 Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatment J. Food Eng. 97 3 425 433 https://doi.org/10.1016/j.jfoodeng.2009.10.038. Search in Google Scholar

Kim, J., Rivadeneira, R. G., Castell-Perez, M. E., & Moreira, R. G. (2006). Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foods. J. Food Eng., 74(3), 359–369. KimJ. RivadeneiraR. G. Castell-PerezM. E. MoreiraR. G. 2006 Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foods J. Food Eng. 74 3 359 369 Search in Google Scholar

Hallman, G. J., & Loaharanu, P. (2016). Phytosanitary irradiation – Development and application. Radiat. Phys. Chem., 129, 39–45. https://doi.org/10.1016/j.radphyschem.2016.08.003. HallmanG. J. LoaharanuP. 2016 Phytosanitary irradiation – Development and application Radiat. Phys. Chem. 129 39 45 https://doi.org/10.1016/j.radphyschem.2016.08.003. Search in Google Scholar

Majer, M., Roguljić, M., Knežević, Ž., Starodumov, A., Ferenček, D., Brigljević, V., & Mihaljević, B. (2019). Dose mapping of the panoramic 60Co gamma irradiation facility at the Ruđer Bošković Institute – Geant4 simulation and measurements. Appl. Radiat. Isot., 154, 108824. https://doi.org/10.1016/j.apradiso.2019.108824. MajerM. RoguljićM. KneževićŽ. StarodumovA. FerenčekD. BrigljevićV. MihaljevićB. 2019 Dose mapping of the panoramic 60Co gamma irradiation facility at the Ruđer Bošković Institute – Geant4 simulation and measurements Appl. Radiat. Isot. 154 108824 https://doi.org/10.1016/j.apradiso.2019.108824. Search in Google Scholar

Kim, J., Moreira, R. G., & Castell-Perez, E. (2011). Optimizing irradiation treatment of shell eggs using simulation. J. Food Sci., 76(1), 173–177. KimJ. MoreiraR. G. Castell-PerezE. 2011 Optimizing irradiation treatment of shell eggs using simulation J. Food Sci. 76 1 173 177 Search in Google Scholar

Kim, J., Kwon, S. -H., Chung, S. -W., Kwon, S. -G., Park, J. -M., & Choi, W. -S. (2013). Understanding phytosanitary irradiation treatment of pineapple using Monte Carlo simulation. J. Biosyst. Eng., 38(2), 87–94. KimJ. KwonS. -H. ChungS. -W. KwonS. -G. ParkJ. -M. ChoiW. -S. 2013 Understanding phytosanitary irradiation treatment of pineapple using Monte Carlo simulation J. Biosyst. Eng. 38 2 87 94 Search in Google Scholar

Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2015). Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation. J. Food Eng., 149, 137–143. https://doi.org/10.1016/jjfoodeng.2014.10.005. KimJ. MoreiraR. G. Castell-PerezM. E. 2015 Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation J. Food Eng. 149 137 143 https://doi.org/10.1016/jjfoodeng.2014.10.005. Search in Google Scholar

Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2019). Determination of best pine wilt disease treatment using irradiation. J. Radiat. Res. Appl. Sci., 12(1), 269–280. https://doi.org/10.1080/16878507.2019.1650994. KimJ. MoreiraR. G. Castell-PerezM. E. 2019 Determination of best pine wilt disease treatment using irradiation J. Radiat. Res. Appl. Sci. 12 1 269 280 https://doi.org/10.1080/16878507.2019.1650994. Search in Google Scholar

Kim, J., Moreira, R. G., Rivadeneira, R., & Castell-Perez, M. E. (2005). Monte Carlo-based food irradiation simulator. J. Food Process Eng., 29(1), 72–88. KimJ. MoreiraR. G. RivadeneiraR. Castell-PerezM. E. 2005 Monte Carlo-based food irradiation simulator J. Food Process Eng. 29 1 72 88 Search in Google Scholar

Kim, J., Moreira, R. G., Huang, Y., & Castell-Perez, M. E. (2007). 3-D dose distributions for optimum radiation treatment planning of complex foods. J. Food Eng., 79(1), 312–321. KimJ. MoreiraR. G. HuangY. Castell-PerezM. E. 2007 3-D dose distributions for optimum radiation treatment planning of complex foods J. Food Eng. 79 1 312 321 Search in Google Scholar

Kim, J. (2014). Monte Carlo simulation of phytosanitary irradiation treatment for mangosteen using MRI-based geometry. J. Biosyst. Eng., 39(3), 205–214. https://doi.org/10.5307/JBE.2014.39.3.205(2014). KimJ. 2014 Monte Carlo simulation of phytosanitary irradiation treatment for mangosteen using MRI-based geometry J. Biosyst. Eng. 39 3 205 214 https://doi.org/10.5307/JBE.2014.39.3.205(2014). Search in Google Scholar

Peivaste, I., & Alahyarizadeh, G. (2019). Comparative study on absorbed dose distribution of potato and onion in X-ray and electron beam system by MCNPX2.6 code. Mapan, 34(1), 19–29. https://doi.org/10.1007/s12647-018-0287-z. PeivasteI. AlahyarizadehG. 2019 Comparative study on absorbed dose distribution of potato and onion in X-ray and electron beam system by MCNPX2.6 code Mapan 34 1 19 29 https://doi.org/10.1007/s12647-018-0287-z. Search in Google Scholar

Kataoka, N., Kawahara, D., & Sekiguchi, M. (2023). Uniform irradiation of table eggs in the shell with low-energy electron beams. Radiat. Phys. Chem., 202, 110553. https://doi.org/10.1016/j.radphyschem.2022.110553. KataokaN. KawaharaD. SekiguchiM. 2023 Uniform irradiation of table eggs in the shell with low-energy electron beams Radiat. Phys. Chem. 202 110553 https://doi.org/10.1016/j.radphyschem.2022.110553. Search in Google Scholar

Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuya, Y., Matsuda, N., Hirata, Y., Sekikawa, T., Yao, L., Tsai, P. E., Ratliff, H. N., Iwase, H., Sakaki, Y., Sugihara, K., Shigyo, N., Sihver, L., & Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. J. Nucl. Sci. Technol., 61(1), 127–135. https://doi.org/10.1080/00223131.2023.2275736. SatoT. IwamotoY. HashimotoS. OgawaT. FurutaT. AbeS. I. KaiT. MatsuyaY. MatsudaN. HirataY. SekikawaT. YaoL. TsaiP. E. RatliffH. N. IwaseH. SakakiY. SugiharaK. ShigyoN. SihverL. NiitaK. 2024 Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33 J. Nucl. Sci. Technol. 61 1 127 135 https://doi.org/10.1080/00223131.2023.2275736. Search in Google Scholar

Mannai, K., Askri, B., Loussaief, A., & Trabelsi, A. (2007). Evaluation using Geant4 of the transit dose in the Tunisian gamma irradiator for insect sterilization. Appl. Radiat. Isot., 65(6), 701–707. MannaiK. AskriB. LoussaiefA. TrabelsiA. 2007 Evaluation using Geant4 of the transit dose in the Tunisian gamma irradiator for insect sterilization Appl. Radiat. Isot. 65 6 701 707 Search in Google Scholar

El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., Maghnouj, A., Benmessaoud, M., & Yjjou, M. (2023). Control of transit doses by Monte Carlo simulation inside an ionization casemate housing of a 60Co gamma irradiator. Radiat. Phys. Chem., 206, 110776. https://doi.org/10.1016/j.radphyschem.2023.110776. El-OuardiY. AknouchA. DadouchA. MouhibM. MaghnoujA. BenmessaoudM. YjjouM. 2023 Control of transit doses by Monte Carlo simulation inside an ionization casemate housing of a 60Co gamma irradiator Radiat. Phys. Chem. 206 110776 https://doi.org/10.1016/j.radphyschem.2023.110776. Search in Google Scholar

Shiha, M., Cygler, J. E., MacRae, R., & Heath, E. (2023). 4D Monte Carlo dose reconstructions using surface motion measurements. Phys. Med., 114, 103135. https://doi.org/10.1016/j.ejmp.2023.103135. ShihaM. CyglerJ. E. MacRaeR. HeathE. 2023 4D Monte Carlo dose reconstructions using surface motion measurements Phys. Med. 114 103135 https://doi.org/10.1016/j.ejmp.2023.103135. Search in Google Scholar

Moon, S., Han, H., Choi, C., Shin, B., Son, G., Kim, H., Kim, S., Kim, J., Yoon, I. G., Lee, K. H., & Kim, C. H. (2024). Towards accurate dose assessment for emergency industrial radiography source retrieval operations: A preliminary study of 4D Monte Carlo dose calculations. Nucl. Eng. Technol., 56(12), 5428–5436. https://doi.org/10.1016/j.net.2024.09.004. MoonS. HanH. ChoiC. ShinB. SonG. KimH. KimS. KimJ. YoonI. G. LeeK. H. KimC. H. 2024 Towards accurate dose assessment for emergency industrial radiography source retrieval operations: A preliminary study of 4D Monte Carlo dose calculations Nucl. Eng. Technol. 56 12 5428 5436 https://doi.org/10.1016/j.net.2024.09.004. Search in Google Scholar

Gholampourkashi, S., Cygler, J. E., Lavigne, B., & Heath, E. (2020). Validation of 4D Monte Carlo dose calculations using a programmable deformable lung phantom. Phys. Med., 76, 16–27. https://doi.org/10.1016/j.ejmp.2020.05.019. GholampourkashiS. CyglerJ. E. LavigneB. HeathE. 2020 Validation of 4D Monte Carlo dose calculations using a programmable deformable lung phantom Phys. Med. 76 16 27 https://doi.org/10.1016/j.ejmp.2020.05.019. Search in Google Scholar

Loussaief, A., Trabelsi, A., & Baccari, B. (2006). Extended gamma sources modelling using multipole expansion: Application to the Tunisian gamma source load planning. Radiat. Phys. Chem., 75(4), 463–472. LoussaiefA. TrabelsiA. BaccariB. 2006 Extended gamma sources modelling using multipole expansion: Application to the Tunisian gamma source load planning Radiat. Phys. Chem. 75 4 463 472 Search in Google Scholar

Loussaief, A., & Trabelsi, A. (2007). Dose mapping using multipole moments. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 102–105. LoussaiefA. TrabelsiA. 2007 Dose mapping using multipole moments Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ. 580 1 102 105 Search in Google Scholar

Rezaeian, P., Ataenia, V., & Shafiei, S. (2017). An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220. Radiat. Phys. Chem., 141, 339–345. https://doi.org/10.1016/j.radphyschem.2017.08.003. RezaeianP. AtaeniaV. ShafieiS. 2017 An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220 Radiat. Phys. Chem. 141 339 345 https://doi.org/10.1016/j.radphyschem.2017.08.003. Search in Google Scholar

Belkadhi, K., & Manai, K. (2016). Dose calculation using a numerical method based on Haar wavelets integration. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 812, 73–80. https://doi.org/10.1016/j.nima.2015.12.057. BelkadhiK. ManaiK. 2016 Dose calculation using a numerical method based on Haar wavelets integration Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ. 812 73 80 https://doi.org/10.1016/j.nima.2015.12.057. Search in Google Scholar

Singh, M., & Datta, D. (2020). Development of an algorithm for gamma dose mapping in irradiated product using TOPSIS and its validation. Radiat. Phys. Chem., 177, 109123. https://doi.org/10.1016/j.radphyschem.2020.109123. SinghM. DattaD. 2020 Development of an algorithm for gamma dose mapping in irradiated product using TOPSIS and its validation Radiat. Phys. Chem. 177 109123 https://doi.org/10.1016/j.radphyschem.2020.109123. Search in Google Scholar

Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Khankin, V. V., & Krusanov, G. A. (2021). Impact of aluminum plates on uniformity of depth dose distribution in object during electron processing. Mosc. Univ. Phys. Bull., 76(1), S1–S7. https://doi.org/10.3103/S0027134922010106. StudenikinF. R. BliznyukU. A. ChernyaevA. P. KhankinV. V. KrusanovG. A. 2021 Impact of aluminum plates on uniformity of depth dose distribution in object during electron processing Mosc. Univ. Phys. Bull. 76 1 S1 S7 https://doi.org/10.3103/S0027134922010106. Search in Google Scholar

Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Krusanov, G. A., Nikitchenko, A. D., Zolotov, S. A., & Ipatova, V. S. (2023). Electron beam modification for improving dose uniformity in irradiated objects. Eur. Phys. J. Spec. Top., 232(10), 1631–1635. https://doi.org/10.1140/epjs/s11734-023-00886-6. StudenikinF. R. BliznyukU. A. ChernyaevA. P. KrusanovG. A. NikitchenkoA. D. ZolotovS. A. IpatovaV. S. 2023 Electron beam modification for improving dose uniformity in irradiated objects Eur. Phys. J. Spec. Top. 232 10 1631 1635 https://doi.org/10.1140/epjs/s11734-023-00886-6. Search in Google Scholar

Bliznyuk, U. A., Borshchegovskaya, P. Y., Zolotov, S. A., Ipatova, V. S., Krusanov, G. A., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2022). Determining the electron beam spectrum after passing through aluminum plates. Mosc. Univ. Phys. Bull., 77(4), 615–621. https://doi.org/10.3103/S0027134922040038. BliznyukU. A. BorshchegovskayaP. Y. ZolotovS. A. IpatovaV. S. KrusanovG. A. NikitchenkoA. D. StudenikinF. R. ChernyaevA. P. 2022 Determining the electron beam spectrum after passing through aluminum plates Mosc. Univ. Phys. Bull. 77 4 615 621 https://doi.org/10.3103/S0027134922040038. Search in Google Scholar

Bliznyuk, U. A., Avdyukhina, V. M., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2021). Estimating the accuracy of reconstructing bichromatic spectra of electron beams from depth dose distributions. Bull. Russ. Acad. Sci. Phys., 85(10), 1108–1112. https://doi.org/10.3103/S1062873821100099. BliznyukU. A. AvdyukhinaV. M. BorshchegovskayaP. Y. IpatovaV. S. NikitchenkoA. D. StudenikinF. R. ChernyaevA. P. 2021 Estimating the accuracy of reconstructing bichromatic spectra of electron beams from depth dose distributions Bull. Russ. Acad. Sci. Phys. 85 10 1108 1112 https://doi.org/10.3103/S1062873821100099. Search in Google Scholar

Bliznyuk, U. A., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, P. (2022). Determining the beam spectrum of industrial electron accelerator using depth dose distribution. Bull. Russ. Acad. Sci. Phys., 86(4), 500–507. https://doi.org/10.3103/S1062873822040062. BliznyukU. A. BorshchegovskayaP. Y. IpatovaV. S. NikitchenkoA. D. StudenikinF. R. ChernyaevP. 2022 Determining the beam spectrum of industrial electron accelerator using depth dose distribution Bull. Russ. Acad. Sci. Phys. 86 4 500 507 https://doi.org/10.3103/S1062873822040062. Search in Google Scholar

Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry. Appl. Radiat. Isot., 57(4), 537–542. https://doi.org/10.1016/S0969-8043(02)00130-6. SohrabpourM. HassanzadehM. ShahriariM. SharifzadehM. 2002 Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry Appl. Radiat. Isot. 57 4 537 542 https://doi.org/10.1016/S0969-8043(02)00130-6. Search in Google Scholar

Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Dose distribution of the IR-136 irradiator using a Monte Carlo code and comparison with dosimetry. Radiat. Phys. Chem., 63, 769–772. SohrabpourM. HassanzadehM. ShahriariM. SharifzadehM. 2002 Dose distribution of the IR-136 irradiator using a Monte Carlo code and comparison with dosimetry Radiat. Phys. Chem. 63 769 772 Search in Google Scholar

Raisali, G. R., & Sohrabpour, M. (1993). Application of EGS4 computer code for determination of gamma ray spectrum and dose rate distribution in Gammacell 220. Radiat. Phys. Chem., 42, 799–805. RaisaliG. R. SohrabpourM. 1993 Application of EGS4 computer code for determination of gamma ray spectrum and dose rate distribution in Gammacell 220 Radiat. Phys. Chem. 42 799 805 Search in Google Scholar

Weiss, D. E., & Stangeland, R. J. (2003). Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo code. Radiat. Phys. Chem., 68(6), 947–958. WeissD. E. StangelandR. J. 2003 Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo code Radiat. Phys. Chem. 68 6 947 958 Search in Google Scholar

Oliveira, C., Salgado, J., Botelho, M. L., & Ferreira, L. M. (2000). Dose determination by Monte Carlo – A useful tool in gamma radiation process. Radiat. Phys. Chem., 57(3/6), 667–670. OliveiraC. SalgadoJ. BotelhoM. L. FerreiraL. M. 2000 Dose determination by Monte Carlo – A useful tool in gamma radiation process Radiat. Phys. Chem. 57 3/6 667 670 Search in Google Scholar

Oliveira, C., Salgado, J., & Ferro De Carvalho, A. (2000). Dose rate determinations in the Portuguese gamma irradiation facility: Monte Carlo simulations and measurements. Radiat. Phys. Chem., 58(3), 279–285. OliveiraC. SalgadoJ. Ferro De CarvalhoA. 2000 Dose rate determinations in the Portuguese gamma irradiation facility: Monte Carlo simulations and measurements Radiat. Phys. Chem. 58 3 279 285 Search in Google Scholar

Belchior, A., Botelho, M. L., & Vaz, P. (2007). Monte Carlo simulations and dosimetric studies of an irradiation facility. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 70–72. https://doi.org/10.1016/j.nima.2007.05.040. BelchiorA. BotelhoM. L. VazP. 2007 Monte Carlo simulations and dosimetric studies of an irradiation facility Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ. 580 1 70 72 https://doi.org/10.1016/j.nima.2007.05.040. Search in Google Scholar

Portugal, L., Cardoso, J., & Oliveira, C. (2010). Monte Carlo validation of the irradiator parameters of the Portuguese gamma irradiation facility after its replenishment. Appl. Radiat. Isot., 68(1), 190–195. PortugalL. CardosoJ. OliveiraC. 2010 Monte Carlo validation of the irradiator parameters of the Portuguese gamma irradiation facility after its replenishment Appl. Radiat. Isot. 68 1 190 195 Search in Google Scholar

Gharbi, F., Kadri, O., Farah, K., & Mannai, K. (2005). Validation of GEANT code of CERN as predictive tool of dose rate measurement in the Tunisian gamma irradiation facility. Radiat. Phys. Chem., 74(2), 102–110. GharbiF. KadriO. FarahK. MannaiK. 2005 Validation of GEANT code of CERN as predictive tool of dose rate measurement in the Tunisian gamma irradiation facility Radiat. Phys. Chem. 74 2 102 110 Search in Google Scholar

Kadri, O., Gharbi, F., & Farah, K. (2005). Monte Carlo improvement of dose uniformity in gamma irradiation processing using the GEANT4 code. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 239(4), 391–398. KadriO. GharbiF. FarahK. 2005 Monte Carlo improvement of dose uniformity in gamma irradiation processing using the GEANT4 code Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 239 4 391 398 Search in Google Scholar

Ounalli, L., Bhar, M., Mejri, A., Manai, K., Bouabidi, A., Abdallah, S. M., & Reguigui, N. (2017). Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the source. Nucl. Sci. Tech., 28(9), 1–10. https://doi.org/10.1007/s41365-017-0289-5. OunalliL. BharM. MejriA. ManaiK. BouabidiA. AbdallahS. M. ReguiguiN. 2017 Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the source Nucl. Sci. Tech. 28 9 1 10 https://doi.org/10.1007/s41365-017-0289-5. Search in Google Scholar

Kim, Y. H., & Park, J. W. (2008). Dose rate simulation of a panoramic gamma irradiator using the MCNPX code and comparison with measurements. J. Nucl. Sci. Technol., 45, 325–328. https://doi.org/10.1080/00223131.2008.10875854. KimY. H. ParkJ. W. 2008 Dose rate simulation of a panoramic gamma irradiator using the MCNPX code and comparison with measurements J. Nucl. Sci. Technol. 45 325 328 https://doi.org/10.1080/00223131.2008.10875854. Search in Google Scholar

Kang, C. M., Jung, S. T., Pyo, S. H., Seo, Y., Kang, W. G., Kim, J. K., Nho, Y. C., Park, J. S., & Choi, J. H. (2023). Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations. Nucl. Eng. Technol., 55(12), 4678–4684. https://doi.org/10.1016/j.net.2023.09.004. KangC. M. JungS. T. PyoS. H. SeoY. KangW. G. KimJ. K. NhoY. C. ParkJ. S. ChoiJ. H. 2023 Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations Nucl. Eng. Technol. 55 12 4678 4684 https://doi.org/10.1016/j.net.2023.09.004. Search in Google Scholar

Khattab, K., Boush, M., & Alkassiri, H. (2013). Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking. Ann. Nucl. Energy, 58, 110–112. https://doi.org/10.1016/j.anucene.2012.11.009. KhattabK. BoushM. AlkassiriH. 2013 Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking Ann. Nucl. Energy 58 110 112 https://doi.org/10.1016/j.anucene.2012.11.009. Search in Google Scholar

Mortuza, M. F., Lepore, L., Khedkar, K., Thangam, S., Nahar, A., Jamil, H. M., Bandi, L., & Alam, Md K. (2018). Comissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data. Radiat. Phys. Chem., 144, 256–264. https://doi.org/10.1016/j.radphyschem.2017.08.022. MortuzaM. F. LeporeL. KhedkarK. ThangamS. NaharA. JamilH. M. BandiL. AlamMd K. 2018 Comissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data Radiat. Phys. Chem. 144 256 264 https://doi.org/10.1016/j.radphyschem.2017.08.022. Search in Google Scholar

Gual, M. R., Milian, F. M., Mesquita, A. Z., & Pereira, C. (2017). New source models to represent the irradiation process in panoramic gamma irradiator. Appl. Radiat. Isot., 128, 175–182. https://doi.org/10.1016/j.apradiso.2017.06.046. GualM. R. MilianF. M. MesquitaA. Z. PereiraC. 2017 New source models to represent the irradiation process in panoramic gamma irradiator Appl. Radiat. Isot. 128 175 182 https://doi.org/10.1016/j.apradiso.2017.06.046. Search in Google Scholar

Gual, M. R., Mesquita, A. Z., Ribeiro, E., & Grossi, P. A. (2017). Shielding verifications for a gamma irradiation facility considering the installation of a new automatic product loading system. Sci. Technol. Nucl. Install., 2017, 1–6. https://doi.org/10.1155/2017/7408645. GualM. R. MesquitaA. Z. RibeiroE. GrossiP. A. 2017 Shielding verifications for a gamma irradiation facility considering the installation of a new automatic product loading system Sci. Technol. Nucl. Install. 2017 1 6 https://doi.org/10.1155/2017/7408645. Search in Google Scholar

Gual, M. R., Pereira, C., & Mesquita, A. Z. (2019). Application of a new source model of a panoramic gamma irradiator on dose map formation in an irradiated product. Appl. Radiat. Isot., 144, 87–92. https://doi.org/10.1016/j.apradiso.2018.12.002. GualM. R. PereiraC. MesquitaA. Z. 2019 Application of a new source model of a panoramic gamma irradiator on dose map formation in an irradiated product Appl. Radiat. Isot. 144 87 92 https://doi.org/10.1016/j.apradiso.2018.12.002. Search in Google Scholar

Aknouch, A., Elouardi, Y., Mouhib, M., Sebihi, R., Didi, A., & Choukri, A. (2020). New approach to make cylindrical packaging products in rotation around their fixed axis during irradiation in the Monte Carlo simulation. Mosc. Univ. Phys. Bull., 75(5), 447–450. https://doi.org/10.3103/S0027134920050045. AknouchA. ElouardiY. MouhibM. SebihiR. DidiA. ChoukriA. 2020 New approach to make cylindrical packaging products in rotation around their fixed axis during irradiation in the Monte Carlo simulation Mosc. Univ. Phys. Bull. 75 5 447 450 https://doi.org/10.3103/S0027134920050045. Search in Google Scholar

Aknouch, A., Mouhib, M., Sebihi, R., Didi, A., El-Ouardi, Y., Boubekraoui, A., & Choukri, A. (2020). Monte Carlo simulation of the dose rate distribution of a Moroccan panoramic gamma irradiator using the MCNPX code. Mosc. Univ. Phys. Bull., 75(1), 35–38. https://doi.org/10.3103/S0027134920010026. AknouchA. MouhibM. SebihiR. DidiA. El-OuardiY. BoubekraouiA. ChoukriA. 2020 Monte Carlo simulation of the dose rate distribution of a Moroccan panoramic gamma irradiator using the MCNPX code Mosc. Univ. Phys. Bull. 75 1 35 38 https://doi.org/10.3103/S0027134920010026. Search in Google Scholar

Kataoka, N., Kawahara, D., & Sekiguchi, M. (2021). Surface treatment of eggshells with low-energy electron beam. J. Radiat. Prot. Res., 46(1), 8–13. https://doi.org/10.14407/JRPR.2020. KataokaN. KawaharaD. SekiguchiM. 2021 Surface treatment of eggshells with low-energy electron beam J. Radiat. Prot. Res. 46 1 8 13 https://doi.org/10.14407/JRPR.2020. Search in Google Scholar

Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Chemia, Chemia nuklearna, Fizyka, Astronomia i astrofizyka, Fizyka, inne