Department of Physics, Faculty of Mathematics and Natural Science, University of Indonesia, Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation AgencySouth Tangerang,
Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation AgencySouth Tangerang, Indonesia
Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation AgencySouth Tangerang, Indonesia
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Colletti, A. C., Denoya, G. I., Vaudagna, S. R., & Polenta, G. A. (2024). Novel applications of gamma irradiation on fruit processing. Curr. Food Sci. Technol. Rep., 2(1), 55–64. https://doi.org/10.1007/s43555-024-00016-w.CollettiA. C.DenoyaG. I.VaudagnaS. R.PolentaG. A.2024Novel applications of gamma irradiation on fruit processingCurr. Food Sci. Technol. Rep.215564https://doi.org/10.1007/s43555-024-00016-w.Search in Google Scholar
Bisht, B., Bhatnagar, P., Gururani, P., Kumar, V., Tomar, M. S., Sinhmar, R., Rathi, N., & Kumar, S. (2021). Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a review. Trends Food Sci. Technol., 114, 372–385. https://doi.org/10.1016/j.tifs.2021.06.002.BishtB.BhatnagarP.GururaniP.KumarV.TomarM. S.SinhmarR.RathiN.KumarS.2021Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables–a reviewTrends Food Sci. Technol.114372385https://doi.org/10.1016/j.tifs.2021.06.002.Search in Google Scholar
Chaudhary, S., Kumar, S., Kumar, V., Singh, B., & Dhiman, A. (2024). Irradiation: A tool for the sustainability of fruit and vegetable supply chain–advancements and future trends. Radiat. Phys. Chem., 217, 111511. https://doi.org/10.1016/j.radphyschem.2024.111511.ChaudharyS.KumarS.KumarV.SinghB.DhimanA.2024Irradiation: A tool for the sustainability of fruit and vegetable supply chain–advancements and future trendsRadiat. Phys. Chem.217111511https://doi.org/10.1016/j.radphyschem.2024.111511.Search in Google Scholar
Li, D., Bisel, T. T., Cooley, S. K., Ni, Y., Murphy, M. K., Spencer, M. P., Hasan, Md K., Fifield, L. S., Pharr, M., Staack, D., Huang, M., Pillai, S. D., Nichols, L., Parker, R., & Gustin, E. (2025). Gamma, electron beam and X-ray irradiation effects on polymers in an advanced bone cement mixer device. Radiat. Phys. Chem., 226, 112188. https://doi.org/10.1016/j.radphyschem.2024.112188.LiD.BiselT. T.CooleyS. K.NiY.MurphyM. K.SpencerM. P.HasanMd K.FifieldL. S.PharrM.StaackD.HuangM.PillaiS. D.NicholsL.ParkerR.GustinE.2025Gamma, electron beam and X-ray irradiation effects on polymers in an advanced bone cement mixer deviceRadiat. Phys. Chem.226112188https://doi.org/10.1016/j.radphyschem.2024.112188.Search in Google Scholar
Akter, H., Cunningham, N., Rempoulakis, P., & Bluml, M. (2023). An overview of phytosanitary irradiation requirements for Australian pests of quarantine concern. Agriculture, 13(4), 1–15. https://doi.org/10.3390/agriculture13040771.AkterH.CunninghamN.RempoulakisP.BlumlM.2023An overview of phytosanitary irradiation requirements for Australian pests of quarantine concernAgriculture134115https://doi.org/10.3390/agriculture13040771.Search in Google Scholar
Ihsanullah, I., & Rashid, A. (2017). Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countries. Food Control, 72, 345–359. https://doi.org/10.1016/j.foodcont.2016.03.011.IhsanullahI.RashidA.2017Current activities in food irradiation as a sanitary and phytosanitary treatment in the Asia and the Pacific Region and a comparison with advanced countriesFood Control72345359https://doi.org/10.1016/j.foodcont.2016.03.011.Search in Google Scholar
Kuntz, F., & Strasser, A. (2016). The specifics of dosimetry for food irradiation applications. Radiat. Phys. Chem., 129, 46–49.KuntzF.StrasserA.2016The specifics of dosimetry for food irradiation applicationsRadiat. Phys. Chem.1294649Search in Google Scholar
Majer, M., Pasariček, L., & Knežević, Ž. (2024). Dose mapping of the 60Co gamma irradiation facility and a real irradiated product – Measurements and Monte Carlo simulation. Radiat. Phys. Chem., 214, 111280.MajerM.PasaričekL.KneževićŽ.2024Dose mapping of the 60Co gamma irradiation facility and a real irradiated product – Measurements and Monte Carlo simulationRadiat. Phys. Chem.214111280Search in Google Scholar
Saputro, B., Saputro, A. H., & Nuraeni, N. (2024). A Monte Carlo approach for predictive tools in gamma irradiator: a review. J. Radioanal. Nucl. Chem., 0123456789. https://doi.org/10.1007/s10967-024-09871-2.SaputroB.SaputroA. H.NuraeniN.2024A Monte Carlo approach for predictive tools in gamma irradiator: a reviewJ. Radioanal. Nucl. Chem.0123456789. https://doi.org/10.1007/s10967-024-09871-2.Search in Google Scholar
Singh, M., Datta, D., & Gupta, A. (2023). Modelling and optimization of dosimeters in the product box for commissioning dosimetry at gamma irradiator using Voronoi Diagram algorithm. Radiat. Phys. Chem., 210, 111011. https://doi.org/10.1016/j.radphyschem.2023.111011.SinghM.DattaD.GuptaA.2023Modelling and optimization of dosimeters in the product box for commissioning dosimetry at gamma irradiator using Voronoi Diagram algorithmRadiat. Phys. Chem.210111011https://doi.org/10.1016/j.radphyschem.2023.111011.Search in Google Scholar
Rivadeneira, R., Kim, J., Huang, Y., Castell-Perez, M. E., & Moreira, R. (2007). A 3-D dosimeter for complex-shaped foods using electron-beam irradiation. Am. Soc. Agric. Biol. Eng., 50(5), 1751–1758.RivadeneiraR.KimJ.HuangY.Castell-PerezM. E.MoreiraR.2007A 3-D dosimeter for complex-shaped foods using electron-beam irradiationAm. Soc. Agric. Biol. Eng.50517511758Search in Google Scholar
Andreo, P. (1991). Monte Carlo techniques in medical radiation physics. Phys. Med. Biol., 36(7), 861–920.AndreoP.1991Monte Carlo techniques in medical radiation physicsPhys. Med. Biol.367861920Search in Google Scholar
Andreo, P. (2018). Monte Carlo simulations in radiotherapy dosimetry. Radiat. Oncol., 13(1), 1–15. https://doi.org/10.1186/s13014-018-1065-3.AndreoP.2018Monte Carlo simulations in radiotherapy dosimetryRadiat. Oncol.131115https://doi.org/10.1186/s13014-018-1065-3.Search in Google Scholar
Moradi, F., Khandaker, M. U., Mahdiraji, G. A., Ung, N. M., & Bradley, D. A. (2017). Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulation. Radiat. Phys. Chem., 140, 107–111. https://doi.org/10.1016/j.radphyschem.2017.01.032.MoradiF.KhandakerM. U.MahdirajiG. A.UngN. M.BradleyD. A.2017Dose mapping inside a gamma irradiator measured with doped silica fibre dosimetry and Monte Carlo simulationRadiat. Phys. Chem.140107111https://doi.org/10.1016/j.radphyschem.2017.01.032.Search in Google Scholar
Belkadhi, K., Elhamdi, K., Bhar, M., & Manai, K. (2017). Dose calculation using Haar wavelets with buildup correction. Appl. Radiat. Isot., 127, 186–194. https://doi.org/10.1016/j.apradiso.2017.06.011.BelkadhiK.ElhamdiK.BharM.ManaiK.2017Dose calculation using Haar wavelets with buildup correctionAppl. Radiat. Isot.127186194https://doi.org/10.1016/j.apradiso.2017.06.011.Search in Google Scholar
Zolotov, S. A., Bliznyuk, U. A., Studenikin, F. R., Borshchegovskaya, P. Y., & Krusanov, G. A. (2023). Combination of aluminum plates of different thicknesses to increase the homogeneity of radiation treatment by accelerated electrons. Phys. Part. Nucl. Lett., 20(4), 954–958.ZolotovS. A.BliznyukU. A.StudenikinF. R.BorshchegovskayaP. Y.KrusanovG. A.2023Combination of aluminum plates of different thicknesses to increase the homogeneity of radiation treatment by accelerated electronsPhys. Part. Nucl. Lett.204954958Search in Google Scholar
Knoll, G. F. (2010). Radiation detection and measurement (4th ed.). John Wiley & Sons.KnollG. F.2010Radiation detection and measurement4th ed.John Wiley & SonsSearch in Google Scholar
Renaud, J., Palmans, H., Sarfehnia, A., & Seuntjens, J. (2020). Absorbed dose calorimetry. Phys. Med. Biol., 65(5), 05TR02. DOI: 10.1088/1361-6560/ab4f29.RenaudJ.PalmansH.SarfehniaA.SeuntjensJ.2020Absorbed dose calorimetryPhys. Med. Biol.65505TR0210.1088/1361-6560/ab4f29Open DOISearch in Google Scholar
McEwen, M. R., Sharpe, P. H. G., Pazos, I. M., Miller, A., Pawlak, E., Ninlaphruk, S., Zhang, Y., & Kessler, C. (2022). Supplementary comparison CCRI(I)-S3 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levels. Metrologia, 59(1A), 1–18. DOI: 10.1088/0026-1394/59/1A/06012.McEwenM. R.SharpeP. H. G.PazosI. M.MillerA.PawlakE.NinlaphrukS.ZhangY.KesslerC.2022Supplementary comparison CCRI(I)-S3 of standards for absorbed dose to water in 60Co gamma radiation at radiation processing dose levelsMetrologia591A11810.1088/0026-1394/59/1A/06012Open DOISearch in Google Scholar
Muir, B. R., Cojocaru, C. D., McEwen, M. R., & Ross, C. K. (2017). Electron beam water calorimetry measurements to obtain beam quality conversion factors. Med. Phys., 44(10), 5433–5444.MuirB. R.CojocaruC. D.McEwenM. R.RossC. K.2017Electron beam water calorimetry measurements to obtain beam quality conversion factorsMed. Phys.441054335444Search in Google Scholar
Miller, A. (1995). Polystyrene calorimeter for electron beam dose measurements. Radiat. Phys. Chem., 46(4/6), 1243–1246.MillerA.1995Polystyrene calorimeter for electron beam dose measurementsRadiat. Phys. Chem.464/612431246Search in Google Scholar
Miller, A., & Kovacs, A. (1990). Application of calorimeters for routine and reference dosimetry at 4–10 MeV industrial electron accelerators. Radiat. Phys. Chem., 35, 774–778.MillerA.KovacsA.1990Application of calorimeters for routine and reference dosimetry at 4–10 MeV industrial electron acceleratorsRadiat. Phys. Chem.35774778Search in Google Scholar
Miller, A., Kovacs, A., & Kuntz, F. (2002). Development of polystyrene calorimeter for application at electron energies down to 1.5 MeV. Radiat. Phys. Chem., 63, 739–744.MillerA.KovacsA.KuntzF.2002Development of polystyrene calorimeter for application at electron energies down to 1.5 MeVRadiat. Phys. Chem.63739744Search in Google Scholar
ISO/ASTM International. (2013). ISO/ASTM 51631: Practice for use of calorimetric dosimetry systems for electron beam dose measurements and routine dosimetry system calibration.ISO/ASTM International2013ISO/ASTM 51631: Practice for use of calorimetric dosimetry systems for electron beam dose measurements and routine dosimetry system calibrationSearch in Google Scholar
International Atomic Energy Agency. (2002). Dosimetry for food irradiation. Vienna: IAEA. (TRS no. 409).International Atomic Energy Agency2002Dosimetry for food irradiationViennaIAEA(TRS no. 409).Search in Google Scholar
Secerov, B., Radenkovic, M., & Dramicanin, M. (2016). Uncertainty and routine use of aerial L-alanine – electron spin resonance dosimetry system. Radiat. Meas., 89, 63–67. https://doi.org/10.1016/j.radmeas.2016.03.003.SecerovB.RadenkovicM.DramicaninM.2016Uncertainty and routine use of aerial L-alanine – electron spin resonance dosimetry systemRadiat. Meas.896367https://doi.org/10.1016/j.radmeas.2016.03.003.Search in Google Scholar
Yang, Z., Vrielinck, H., Jacobsohn, L. G., Smet, P. F., & Poelman, D. (2024). Passive dosimeters for radiation dosimetry: Materials, mechanisms, and applications. Adv. Funct. Mater., 34(41), 2406186. https://doi.org/10.1002/adfm.202406186.YangZ.VrielinckH.JacobsohnL. G.SmetP. F.PoelmanD.2024Passive dosimeters for radiation dosimetry: Materials, mechanisms, and applicationsAdv. Funct. Mater.34412406186https://doi.org/10.1002/adfm.202406186.Search in Google Scholar
Mahdiraji, G. A., Ghomeishi, M., Dermosesian, E., Hashim, S., Ung, N. M., Adikan, F. R. M., & Bradley, D. A. (2015). Optical fiber based dosimeter sensor: Beyond TLD-100 limits. Sens. Actuators A-Phys., 222, 48–57. https://doi.org/10.1016/j.sna.2014.11.017.MahdirajiG. A.GhomeishiM.DermosesianE.HashimS.UngN. M.AdikanF. R. M.BradleyD. A.2015Optical fiber based dosimeter sensor: Beyond TLD-100 limitsSens. Actuators A-Phys.2224857https://doi.org/10.1016/j.sna.2014.11.017.Search in Google Scholar
Oresegun, A., Basaif, A., Tarif, Z. H., Abdul-Rashid, H. A., Hashim, S. A., & Bradley, D. A. (2021). Radioluminescence of silica optical fibre scintillators for real-time industrial radiation dosimetry. Radiat. Phys. Chem., 188, 109684. https://doi.org/10.1016/j.radphyschem.2021.109684.OresegunA.BasaifA.TarifZ. H.Abdul-RashidH. A.HashimS. A.BradleyD. A.2021Radioluminescence of silica optical fibre scintillators for real-time industrial radiation dosimetryRadiat. Phys. Chem.188109684https://doi.org/10.1016/j.radphyschem.2021.109684.Search in Google Scholar
Schuster, C., Kuntz, F., Strasser, A., Härtling, T., Dornich, K., & Richter, D. (2021). 3D relative dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 180, 109238.SchusterC.KuntzF.StrasserA.HärtlingT.DornichK.RichterD.20213D relative dose measurement with a μm thin dosimetric layerRadiat. Phys. Chem.180109238Search in Google Scholar
Schuster, C., Kuntz, F., Cloetta, D., Zeller, M., Katzmann, J., Strasser, A., Härtling, T., & Lavalle, M. (2022). Depth dose curve and surface dose measurement with a μm thin dosimetric layer. Radiat. Phys. Chem., 193, 109881. https://doi.org/10.1016/j.radphyschem.2021.109881.SchusterC.KuntzF.CloettaD.ZellerM.KatzmannJ.StrasserA.HärtlingT.LavalleM.2022Depth dose curve and surface dose measurement with a μm thin dosimetric layerRadiat. Phys. Chem.193109881https://doi.org/10.1016/j.radphyschem.2021.109881.Search in Google Scholar
Rabaeh, K. A., Aljammal, S. A., Eyadeh, M. M., & Abumurad, K. M. (2021). Methyl thymol blue solution and film dosimeter for high dose measurements. Results Phys., 23, 103980. https://doi.org/10.1016/j.rinp.2021.103980.RabaehK. A.AljammalS. A.EyadehM. M.AbumuradK. M.2021Methyl thymol blue solution and film dosimeter for high dose measurementsResults Phys.23103980https://doi.org/10.1016/j.rinp.2021.103980.Search in Google Scholar
Soliman, Y. S., Abdel-Fattah, A. A., & Alkhuraiji, T. S. (2018). Radiochromic film containing poly(hexa-2,4-diynylene adipate) as a radiation dosimeter. Appl. Radiat. Isot., 141, 80–87. https://doi.org/10.1016/j.apradiso.2018.08.016.SolimanY. S.Abdel-FattahA. A.AlkhuraijiT. S.2018Radiochromic film containing poly(hexa-2,4-diynylene adipate) as a radiation dosimeterAppl. Radiat. Isot.1418087https://doi.org/10.1016/j.apradiso.2018.08.016.Search in Google Scholar
Rachmanto, A., Putri, M. A. E., Yunus, M. Y., Yunus, L., Fitriana, R., & Rahmawati, R. (2024). ESR spectroscopic analysis of fructose as a dosimeter for gamma radiation. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 557, 165551. https://doi.org/10.1016/j.nimb.2024.165551.RachmantoA.PutriM. A. E.YunusM. Y.YunusL.FitrianaR.RahmawatiR.2024ESR spectroscopic analysis of fructose as a dosimeter for gamma radiationNucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms557165551https://doi.org/10.1016/j.nimb.2024.165551.Search in Google Scholar
Al-Ghamdi, H., Farah, K., Almuqrin, A., & Hosni, F. (2022). FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurements. Nucl. Eng. Technol., 54(1), 255–261. https://doi.org/10.1016/j.net.2021.07.023.Al-GhamdiH.FarahK.AlmuqrinA.HosniF.2022FTIR study of gamma and electron irradiated high-density polyethylene for high dose measurementsNucl. Eng. Technol.541255261https://doi.org/10.1016/j.net.2021.07.023.Search in Google Scholar
Khouqeer, G. A., Farah, K., Toumi, S., & Hosni, F. (2025). Electron paramagnetic resonance characterization of gamma and electron irradiated high-density polyethylene: Possible use as a high-dose dosimeter. Nucl. Eng. Technol., 103419. https://doi.org/10.1016/j.net.2024.103419.KhouqeerG. A.FarahK.ToumiS.HosniF.2025Electron paramagnetic resonance characterization of gamma and electron irradiated high-density polyethylene: Possible use as a high-dose dosimeterNucl. Eng. Technol.103419https://doi.org/10.1016/j.net.2024.103419.Search in Google Scholar
Vaiano, P., Consales, M., Casolaro, P., Campajola, L., Fienga, F., Di Capua, F., Breglio, G., Buontempo, S., Cutolo, A., & Cusano, A. (2019). A novel method for EBT3 Gafchromic films read-out at high dose levels. Phys. Med., 61, 77–84. https://doi.org/10.1016/j.ejmp.2019.04.013.VaianoP.ConsalesM.CasolaroP.CampajolaL.FiengaF.Di CapuaF.BreglioG.BuontempoS.CutoloA.CusanoA.2019A novel method for EBT3 Gafchromic films read-out at high dose levelsPhys. Med.617784https://doi.org/10.1016/j.ejmp.2019.04.013.Search in Google Scholar
Nasreddine, A., Kuntz, F., & El Bitar, Z. (2021). Absorbed dose to water determination for kilo-voltage X-rays using alanine/EPR dosimetry systems. Radiat. Phys. Chem., 180, 108938. https://doi.org/10.1016/j.radphyschem.2020.108938.NasreddineA.KuntzF.El BitarZ.2021Absorbed dose to water determination for kilo-voltage X-rays using alanine/EPR dosimetry systemsRadiat. Phys. Chem.180108938https://doi.org/10.1016/j.radphyschem.2020.108938.Search in Google Scholar
Hjørringgaard, J. G., Ankjærgaard, C., Miller, A., & Andersen, C. E. (2023). Kilovoltage X-ray beam quality effect on the relative response of alanine pellet dosemeters. Radiat. Prot. Dosim., 199(14), 1605–1610. https://doi.org/10.1093/rpd/ncad008.HjørringgaardJ. G.AnkjærgaardC.MillerA.AndersenC. E.2023Kilovoltage X-ray beam quality effect on the relative response of alanine pellet dosemetersRadiat. Prot. Dosim.1991416051610https://doi.org/10.1093/rpd/ncad008.Search in Google Scholar
Beigzadeh, A. M., & Vaziri, M. R. R. (2021). Z-scan dosimetry of gamma-irradiated PMMA. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 991, 165022. https://doi.org/10.1016/j.nima.2021.165022.BeigzadehA. M.VaziriM. R. R.2021Z-scan dosimetry of gamma-irradiated PMMANucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ.991165022https://doi.org/10.1016/j.nima.2021.165022.Search in Google Scholar
McEwen, M., Miller, A., Pazos, I., & Sharpe, P. (2020). Determination of a consensus scaling factor to convert a Co-60-based alanine dose reading to yield the dose delivered in a high energy electron beam. Radiat. Phys. Chem., 171, 108673. https://doi.org/10.1016/j.radphyschem.2019.108673.McEwenM.MillerA.PazosI.SharpeP.2020Determination of a consensus scaling factor to convert a Co-60-based alanine dose reading to yield the dose delivered in a high energy electron beamRadiat. Phys. Chem.171108673https://doi.org/10.1016/j.radphyschem.2019.108673.Search in Google Scholar
Skowyra, M. M., Ankjærgaard, C., Yu, L., Lindvold, L. R., Skov, A. L., & Miller, A. (2022). Glass transition temperature of Risø B3 radiochromic film dosimeter and its importance on the post-irradiation heating procedure. Radiat. Phys. Chem., 194, 109982. https://doi.org/10.1016/j.radphyschem.2022.109982.SkowyraM. M.AnkjærgaardC.YuL.LindvoldL. R.SkovA. L.MillerA.2022Glass transition temperature of Risø B3 radiochromic film dosimeter and its importance on the post-irradiation heating procedureRadiat. Phys. Chem.194109982https://doi.org/10.1016/j.radphyschem.2022.109982.Search in Google Scholar
Yamada, H., & Parker, A. (2022). Gafchromic TM MD-V3 and HD-V2 film response depends little on temperature at time of exposure. Radiat. Phys. Chem., 196, 1–7.YamadaH.ParkerA.2022Gafchromic TM MD-V3 and HD-V2 film response depends little on temperature at time of exposureRadiat. Phys. Chem.19617Search in Google Scholar
Hjørringgaard, J. G., Ankjærgaard, C., Bailey, M., & Miller, A. (2020). Alanine pellet dosimeter efficiency in a 40 kV x-ray beam relative to cobalt-60. Radiat. Meas., 136, 106374. https://doi.org/10.1016/j.radmeas.2020.106374.HjørringgaardJ. G.AnkjærgaardC.BaileyM.MillerA.2020Alanine pellet dosimeter efficiency in a 40 kV x-ray beam relative to cobalt-60Radiat. Meas.136106374https://doi.org/10.1016/j.radmeas.2020.106374.Search in Google Scholar
Hjørringgaard, J. G., Ankjærgaard, C., & Andersen, C. E. (2022). The microdosimetric one-hit detector model for calculating the relative efficiency of the alanine pellet dosimeter in low energy X-ray beams. Radiat. Meas., 150, 106659. https://doi.org/10.1016/j.radmeas.2021.106659.HjørringgaardJ. G.AnkjærgaardC.AndersenC. E.2022The microdosimetric one-hit detector model for calculating the relative efficiency of the alanine pellet dosimeter in low energy X-ray beamsRadiat. Meas.150106659https://doi.org/10.1016/j.radmeas.2021.106659.Search in Google Scholar
Eychenne, L., Vander Stappen, F., Kuntz, F., Stichelbaut, F., Dossat, C., Robin-Chabanne, S., & Chatry, N. (2022). High energy X-ray fruit irradiation qualification with Monte Carlo code. Radiat. Phys. Chem., 195, 110075. https://doi.org/10.1016/j.radphyschem.2022.110075.EychenneL.Vander StappenF.KuntzF.StichelbautF.DossatC.Robin-ChabanneS.ChatryN.2022High energy X-ray fruit irradiation qualification with Monte Carlo codeRadiat. Phys. Chem.195110075https://doi.org/10.1016/j.radphyschem.2022.110075.Search in Google Scholar
Andreo, P., Burns, D. T., Kapsch, R. P., McEwen, M., Vatnitsky, S., Andersen, C. E., Ballester, F., Borbinha, J., Delaunay, F., Francescon, P., Hanlon, M. D., Mirzakhanian, L., Muir, B., Ojala, J., Oliver, C. P., Pimpinella, M., Pinto, M., de Prez, L. A., Seuntjens, J., Sommier, J., Teles, P., Tikkanen, J., Vijande, J., & Zink, K. (2020). Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398. Phys. Med. Biol., 65(9), 095011. https://doi.org/10.1088/1361-6560/ab807b.AndreoP.BurnsD. T.KapschR. P.McEwenM.VatnitskyS.AndersenC. E.BallesterF.BorbinhaJ.DelaunayF.FrancesconP.HanlonM. D.MirzakhanianL.MuirB.OjalaJ.OliverC. P.PimpinellaM.PintoM.de PrezL. A.SeuntjensJ.SommierJ.TelesP.TikkanenJ.VijandeJ.ZinkK.2020Determination of consensus kQ values for megavoltage photon beams for the update of IAEA TRS-398Phys. Med. Biol.659095011https://doi.org/10.1088/1361-6560/ab807b.Search in Google Scholar
Bourgouin, A., Schüller, A., Hackel, T., & Kranzer, R. (2020). Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beams. Front. Phys., 8, 567340. https://doi.org/10.3389/fphy.2020.567340.BourgouinA.SchüllerA.HackelT.KranzerR.2020Calorimeter for real-time dosimetry of pulsed ultra-high dose rate electron beamsFront. Phys.8567340https://doi.org/10.3389/fphy.2020.567340.Search in Google Scholar
Subiel, A., & Romano, F. (2023). Recent developments in absolute dosimetry for FLASH radiotherapy. Br. J. Radiol., 96(1148), 20220560. https://doi.org/10.1259/bjr.20220560.SubielA.RomanoF.2023Recent developments in absolute dosimetry for FLASH radiotherapyBr. J. Radiol.96114820220560https://doi.org/10.1259/bjr.20220560.Search in Google Scholar
Van Hung, T., & Khac An, T. (2010). Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in Vietnam. Appl. Radiat. Isot., 68(6), 1104–1107. https://doi.org/10.1016/j.apradiso.2010.01.023.Van HungT.Khac AnT.2010Dose mapping using MCNP code and experiment for SVST-Co-60/B irradiator in VietnamAppl. Radiat. Isot.68611041107https://doi.org/10.1016/j.apradiso.2010.01.023.Search in Google Scholar
Graves, S. A., Flynn, R. T., & Hyer, D. E. (2019). Dose point kernels for 2,174 radionuclides. Med. Phys., 46(11), 5284–5293. https://doi.org/10.1002/mp.13789.GravesS. A.FlynnR. T.HyerD. E.2019Dose point kernels for 2,174 radionuclidesMed. Phys.461152845293https://doi.org/10.1002/mp.13789.Search in Google Scholar
Papadimitroulas, P., Loudos, G., Nikiforidis, G. C., & Kagadis, G. C. (2012). A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codes. Med. Phys., 39(8), 5238–5247. https://doi.org/10.1118/1.4737096.PapadimitroulasP.LoudosG.NikiforidisG. C.KagadisG. C.2012A dose point kernel database using GATE Monte Carlo simulation toolkit for nuclear medicine applications: Comparison with other Monte Carlo codesMed. Phys.39852385247https://doi.org/10.1118/1.4737096.Search in Google Scholar
Belchior, A., Botelho, M. L., Peralta, L., & Vaz, P. (2008). Dose mapping of a 60Co irradiation facility using PENELOPE and MCNPX and its validation by chemical dosimetry. Appl. Radiat. Isot., 66(4), 435–440. https://doi.org/10.1016/j.apradiso.2007.11.017.BelchiorA.BotelhoM. L.PeraltaL.VazP.2008Dose mapping of a 60Co irradiation facility using PENELOPE and MCNPX and its validation by chemical dosimetryAppl. Radiat. Isot.664435440https://doi.org/10.1016/j.apradiso.2007.11.017.Search in Google Scholar
El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., & Benmessaoud, M. (2021). Monte Carlo simulation as a predictive tool to program a reloading operation of a gamma irradiator. Mosc. Univ. Phys. Bull., 76(6), 482–487. https://doi.org/10.3103/S0027134921060047.El-OuardiY.AknouchA.DadouchA.MouhibM.BenmessaoudM.2021Monte Carlo simulation as a predictive tool to program a reloading operation of a gamma irradiatorMosc. Univ. Phys. Bull.766482487https://doi.org/10.3103/S0027134921060047.Search in Google Scholar
Bailey, M., Sephton, J. P., & Sharpe, P. H. G. (2009). Monte Carlo modelling and real-time dosemeter measurements of dose rate distribution at a 60Co industrial irradiation plant. Radiat. Phys. Chem., 78(7/8), 453–456. https://doi.org/10.1016/j.radphyschem.2009.03.024.BaileyM.SephtonJ. P.SharpeP. H. G.2009Monte Carlo modelling and real-time dosemeter measurements of dose rate distribution at a 60Co industrial irradiation plantRadiat. Phys. Chem.787/8453456https://doi.org/10.1016/j.radphyschem.2009.03.024.Search in Google Scholar
Lazurik, V. T., Lazurik, V. M., Popov, G., Rogov, Y., & Zimek, Z. (2011). Information system and software for quality control of radiation processing. Warsaw: International Atomic Energy Agency; Institute of Nuclear Chemistry and Technology.LazurikV. T.LazurikV. M.PopovG.RogovY.ZimekZ.2011Information system and software for quality control of radiation processingWarsawInternational Atomic Energy Agency; Institute of Nuclear Chemistry and TechnologySearch in Google Scholar
Schwarz, R., Salvat, F., Sunderland, D., Azuma, M., Boutros, C., Pillai, S., Kuntz, F., Nasreddine, A., Pagh, J., Wootan, D., & Murphy, M. K. (2024). PUFFIn – A user friendly fast interface for calculating and visualizing the dose distribution in materials. Radiat. Phys. Chem., 222, 111774. https://doi.org/10.1016/j.radphyschem.2024.111774.SchwarzR.SalvatF.SunderlandD.AzumaM.BoutrosC.PillaiS.KuntzF.NasreddineA.PaghJ.WootanD.MurphyM. K.2024PUFFIn – A user friendly fast interface for calculating and visualizing the dose distribution in materialsRadiat. Phys. Chem.222111774https://doi.org/10.1016/j.radphyschem.2024.111774.Search in Google Scholar
Rafiepour, P., Sina, S., & Javad Mortazavi, S. M. (2023). A multiscale Monte Carlo simulation of irradiating a typical-size apple by low-energy X-rays and electron beams. Radiat. Phys. Chem., 212, 111016. https://doi.org/10.1016/j.radphyschem.2023.111016.RafiepourP.SinaS.Javad MortazaviS. M.2023A multiscale Monte Carlo simulation of irradiating a typical-size apple by low-energy X-rays and electron beamsRadiat. Phys. Chem.212111016https://doi.org/10.1016/j.radphyschem.2023.111016.Search in Google Scholar
Iwamoto, Y., Sato, T., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuda, N., Hosoyamada, R., & Niita, K. (2017). Benchmark study of the recent version of the PHITS code. J. Nucl. Sci. Technol., 54(5), 617–635. https://doi.org/10.1080/00223131.2017.1297742.IwamotoY.SatoT.HashimotoS.OgawaT.FurutaT.AbeS. I.KaiT.MatsudaN.HosoyamadaR.NiitaK.2017Benchmark study of the recent version of the PHITS codeJ. Nucl. Sci. Technol.545617635https://doi.org/10.1080/00223131.2017.1297742.Search in Google Scholar
El-Ouardi, Y., Dadouch, A., Aknouch, A., Mouhib, M., Maghnouj, A., & Didi, A. (2020). Comparative study between Geant4, MCNP6 and experimental results against gamma radiation comes from a cobalt-60 source. Mosc. Univ. Phys. Bull., 75(5), 507–511. https://doi.org/10.3103/S0027134920050033.El-OuardiY.DadouchA.AknouchA.MouhibM.MaghnoujA.DidiA.2020Comparative study between Geant4, MCNP6 and experimental results against gamma radiation comes from a cobalt-60 sourceMosc. Univ. Phys. Bull.755507511https://doi.org/10.3103/S0027134920050033.Search in Google Scholar
Moradi, F., Khandaker, M. U., Abdul Sani, S. F., Uguru, E. H., Sulieman, A., & Bradley, D. A. (2021). Feasibility study of a minibeam collimator design for a 60Co gamma irradiator. Radiat. Phys. Chem., 178, 109026. https://doi.org/10.1016/j.radphyschem.2020.109026.MoradiF.KhandakerM. U.Abdul SaniS. F.UguruE. H.SuliemanA.BradleyD. A.2021Feasibility study of a minibeam collimator design for a 60Co gamma irradiatorRadiat. Phys. Chem.178109026https://doi.org/10.1016/j.radphyschem.2020.109026.Search in Google Scholar
Aknouch, A., El-Ouardi, Y., Hamroud, L., Sebihi, R., Mouhib, M., Yjjou, M., Didi, A., & Choukri, A. (2021). A Monte Carlo study to investigate the feasibility to use the Moroccan panoramic irradiator in sterile insect technique programs. Radiat. Environ. Biophys., 60(4), 673–679. https://doi.org/10.1007/s00411-021-00934-6.AknouchA.El-OuardiY.HamroudL.SebihiR.MouhibM.YjjouM.DidiA.ChoukriA.2021A Monte Carlo study to investigate the feasibility to use the Moroccan panoramic irradiator in sterile insect technique programsRadiat. Environ. Biophys.604673679https://doi.org/10.1007/s00411-021-00934-6.Search in Google Scholar
Saputro, B., Saputro, A. H., Nuraeni, N., Prasetio, H., Firmansyah, O. A., Fendinugroho, & Mayditia, H. (2024). Monte Carlo simulation as precision predictive tools to find isodose curve of gamma irradiator: A preliminary study. Indones. J. Appl. Phys., 14(2), 386. https://doi.org/10.13057/ijap.v14i2.93092.SaputroB.SaputroA. H.NuraeniN.PrasetioH.FirmansyahO. A.FendinugrohoMayditiaH.2024Monte Carlo simulation as precision predictive tools to find isodose curve of gamma irradiator: A preliminary studyIndones. J. Appl. Phys.142386https://doi.org/10.13057/ijap.v14i2.93092.Search in Google Scholar
Cao, V. C., Vo, A. T., Le, Q. T., Le, N. T., Duong, T. H., & Tran, H. N. (2021). Depth-dose profiles in continuous and discontinuous materials of food products and medical devices irradiated by 10 MeV electron beam. J. Radioanal. Nucl. Chem., 330(3), 609–617. https://doi.org/10.1007/s10967-021-07985-5.CaoV. C.VoA. T.LeQ. T.LeN. T.DuongT. H.TranH. N.2021Depth-dose profiles in continuous and discontinuous materials of food products and medical devices irradiated by 10 MeV electron beamJ. Radioanal. Nucl. Chem.3303609617https://doi.org/10.1007/s10967-021-07985-5.Search in Google Scholar
Kroc, T. K. (2023). Monte Carlo simulations demonstrating physics of equivalency of gamma, electronbeam, and X-ray for radiation sterilization. Radiat. Phys. Chem., 204, 110702. https://doi.org/10.1016/j.radphyschem.2022.110702.KrocT. K.2023Monte Carlo simulations demonstrating physics of equivalency of gamma, electronbeam, and X-ray for radiation sterilizationRadiat. Phys. Chem.204110702https://doi.org/10.1016/j.radphyschem.2022.110702.Search in Google Scholar
Jung, S. T., Pyo, S. H., Kang, W. G., Kim, Y. R., Kim, J. K., Kang, C. M., Nho, Y. C., & Park, J. S. (2021). Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beam. Radiat. Phys. Chem., 186, 109506. https://doi.org/10.1016/j.radphyschem.2021.109506.JungS. T.PyoS. H.KangW. G.KimY. R.KimJ. K.KangC. M.NhoY. C.ParkJ. S.2021Energy deposition calculation by Monte Carlo simulation in irradiation of electric cables by electron beamRadiat. Phys. Chem.186109506https://doi.org/10.1016/j.radphyschem.2021.109506.Search in Google Scholar
Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2010). Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatment. J. Food Eng., 97(3), 425–433. https://doi.org/10.1016/j.jfoodeng.2009.10.038.KimJ.MoreiraR. G.Castell-PerezM. E.2010Simulation of pathogen inactivation in whole and fresh-cut cantaloupe (Cucumis melo) using electron beam treatmentJ. Food Eng.973425433https://doi.org/10.1016/j.jfoodeng.2009.10.038.Search in Google Scholar
Kim, J., Rivadeneira, R. G., Castell-Perez, M. E., & Moreira, R. G. (2006). Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foods. J. Food Eng., 74(3), 359–369.KimJ.RivadeneiraR. G.Castell-PerezM. E.MoreiraR. G.2006Development and validation of a methodology for dose calculation in electron beam irradiation of complex-shaped foodsJ. Food Eng.743359369Search in Google Scholar
Hallman, G. J., & Loaharanu, P. (2016). Phytosanitary irradiation – Development and application. Radiat. Phys. Chem., 129, 39–45. https://doi.org/10.1016/j.radphyschem.2016.08.003.HallmanG. J.LoaharanuP.2016Phytosanitary irradiation – Development and applicationRadiat. Phys. Chem.1293945https://doi.org/10.1016/j.radphyschem.2016.08.003.Search in Google Scholar
Majer, M., Roguljić, M., Knežević, Ž., Starodumov, A., Ferenček, D., Brigljević, V., & Mihaljević, B. (2019). Dose mapping of the panoramic 60Co gamma irradiation facility at the Ruđer Bošković Institute – Geant4 simulation and measurements. Appl. Radiat. Isot., 154, 108824. https://doi.org/10.1016/j.apradiso.2019.108824.MajerM.RoguljićM.KneževićŽ.StarodumovA.FerenčekD.BrigljevićV.MihaljevićB.2019Dose mapping of the panoramic 60Co gamma irradiation facility at the Ruđer Bošković Institute – Geant4 simulation and measurementsAppl. Radiat. Isot.154108824https://doi.org/10.1016/j.apradiso.2019.108824.Search in Google Scholar
Kim, J., Moreira, R. G., & Castell-Perez, E. (2011). Optimizing irradiation treatment of shell eggs using simulation. J. Food Sci., 76(1), 173–177.KimJ.MoreiraR. G.Castell-PerezE.2011Optimizing irradiation treatment of shell eggs using simulationJ. Food Sci.761173177Search in Google Scholar
Kim, J., Kwon, S. -H., Chung, S. -W., Kwon, S. -G., Park, J. -M., & Choi, W. -S. (2013). Understanding phytosanitary irradiation treatment of pineapple using Monte Carlo simulation. J. Biosyst. Eng., 38(2), 87–94.KimJ.KwonS. -H.ChungS. -W.KwonS. -G.ParkJ. -M.ChoiW. -S.2013Understanding phytosanitary irradiation treatment of pineapple using Monte Carlo simulationJ. Biosyst. Eng.3828794Search in Google Scholar
Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2015). Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulation. J. Food Eng., 149, 137–143. https://doi.org/10.1016/jjfoodeng.2014.10.005.KimJ.MoreiraR. G.Castell-PerezM. E.2015Improving phytosanitary irradiation treatment of mangoes using Monte Carlo simulationJ. Food Eng.149137143https://doi.org/10.1016/jjfoodeng.2014.10.005.Search in Google Scholar
Kim, J., Moreira, R. G., & Castell-Perez, M. E. (2019). Determination of best pine wilt disease treatment using irradiation. J. Radiat. Res. Appl. Sci., 12(1), 269–280. https://doi.org/10.1080/16878507.2019.1650994.KimJ.MoreiraR. G.Castell-PerezM. E.2019Determination of best pine wilt disease treatment using irradiationJ. Radiat. Res. Appl. Sci.121269280https://doi.org/10.1080/16878507.2019.1650994.Search in Google Scholar
Kim, J., Moreira, R. G., Rivadeneira, R., & Castell-Perez, M. E. (2005). Monte Carlo-based food irradiation simulator. J. Food Process Eng., 29(1), 72–88.KimJ.MoreiraR. G.RivadeneiraR.Castell-PerezM. E.2005Monte Carlo-based food irradiation simulatorJ. Food Process Eng.2917288Search in Google Scholar
Kim, J., Moreira, R. G., Huang, Y., & Castell-Perez, M. E. (2007). 3-D dose distributions for optimum radiation treatment planning of complex foods. J. Food Eng., 79(1), 312–321.KimJ.MoreiraR. G.HuangY.Castell-PerezM. E.20073-D dose distributions for optimum radiation treatment planning of complex foodsJ. Food Eng.791312321Search in Google Scholar
Kim, J. (2014). Monte Carlo simulation of phytosanitary irradiation treatment for mangosteen using MRI-based geometry. J. Biosyst. Eng., 39(3), 205–214. https://doi.org/10.5307/JBE.2014.39.3.205(2014).KimJ.2014Monte Carlo simulation of phytosanitary irradiation treatment for mangosteen using MRI-based geometryJ. Biosyst. Eng.393205214https://doi.org/10.5307/JBE.2014.39.3.205(2014).Search in Google Scholar
Peivaste, I., & Alahyarizadeh, G. (2019). Comparative study on absorbed dose distribution of potato and onion in X-ray and electron beam system by MCNPX2.6 code. Mapan, 34(1), 19–29. https://doi.org/10.1007/s12647-018-0287-z.PeivasteI.AlahyarizadehG.2019Comparative study on absorbed dose distribution of potato and onion in X-ray and electron beam system by MCNPX2.6 codeMapan3411929https://doi.org/10.1007/s12647-018-0287-z.Search in Google Scholar
Kataoka, N., Kawahara, D., & Sekiguchi, M. (2023). Uniform irradiation of table eggs in the shell with low-energy electron beams. Radiat. Phys. Chem., 202, 110553. https://doi.org/10.1016/j.radphyschem.2022.110553.KataokaN.KawaharaD.SekiguchiM.2023Uniform irradiation of table eggs in the shell with low-energy electron beamsRadiat. Phys. Chem.202110553https://doi.org/10.1016/j.radphyschem.2022.110553.Search in Google Scholar
Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S. I., Kai, T., Matsuya, Y., Matsuda, N., Hirata, Y., Sekikawa, T., Yao, L., Tsai, P. E., Ratliff, H. N., Iwase, H., Sakaki, Y., Sugihara, K., Shigyo, N., Sihver, L., & Niita, K. (2024). Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33. J. Nucl. Sci. Technol., 61(1), 127–135. https://doi.org/10.1080/00223131.2023.2275736.SatoT.IwamotoY.HashimotoS.OgawaT.FurutaT.AbeS. I.KaiT.MatsuyaY.MatsudaN.HirataY.SekikawaT.YaoL.TsaiP. E.RatliffH. N.IwaseH.SakakiY.SugiharaK.ShigyoN.SihverL.NiitaK.2024Recent improvements of the particle and heavy ion transport code system – PHITS version 3.33J. Nucl. Sci. Technol.611127135https://doi.org/10.1080/00223131.2023.2275736.Search in Google Scholar
Mannai, K., Askri, B., Loussaief, A., & Trabelsi, A. (2007). Evaluation using Geant4 of the transit dose in the Tunisian gamma irradiator for insect sterilization. Appl. Radiat. Isot., 65(6), 701–707.MannaiK.AskriB.LoussaiefA.TrabelsiA.2007Evaluation using Geant4 of the transit dose in the Tunisian gamma irradiator for insect sterilizationAppl. Radiat. Isot.656701707Search in Google Scholar
El-Ouardi, Y., Aknouch, A., Dadouch, A., Mouhib, M., Maghnouj, A., Benmessaoud, M., & Yjjou, M. (2023). Control of transit doses by Monte Carlo simulation inside an ionization casemate housing of a 60Co gamma irradiator. Radiat. Phys. Chem., 206, 110776. https://doi.org/10.1016/j.radphyschem.2023.110776.El-OuardiY.AknouchA.DadouchA.MouhibM.MaghnoujA.BenmessaoudM.YjjouM.2023Control of transit doses by Monte Carlo simulation inside an ionization casemate housing of a 60Co gamma irradiatorRadiat. Phys. Chem.206110776https://doi.org/10.1016/j.radphyschem.2023.110776.Search in Google Scholar
Shiha, M., Cygler, J. E., MacRae, R., & Heath, E. (2023). 4D Monte Carlo dose reconstructions using surface motion measurements. Phys. Med., 114, 103135. https://doi.org/10.1016/j.ejmp.2023.103135.ShihaM.CyglerJ. E.MacRaeR.HeathE.20234D Monte Carlo dose reconstructions using surface motion measurementsPhys. Med.114103135https://doi.org/10.1016/j.ejmp.2023.103135.Search in Google Scholar
Moon, S., Han, H., Choi, C., Shin, B., Son, G., Kim, H., Kim, S., Kim, J., Yoon, I. G., Lee, K. H., & Kim, C. H. (2024). Towards accurate dose assessment for emergency industrial radiography source retrieval operations: A preliminary study of 4D Monte Carlo dose calculations. Nucl. Eng. Technol., 56(12), 5428–5436. https://doi.org/10.1016/j.net.2024.09.004.MoonS.HanH.ChoiC.ShinB.SonG.KimH.KimS.KimJ.YoonI. G.LeeK. H.KimC. H.2024Towards accurate dose assessment for emergency industrial radiography source retrieval operations: A preliminary study of 4D Monte Carlo dose calculationsNucl. Eng. Technol.561254285436https://doi.org/10.1016/j.net.2024.09.004.Search in Google Scholar
Gholampourkashi, S., Cygler, J. E., Lavigne, B., & Heath, E. (2020). Validation of 4D Monte Carlo dose calculations using a programmable deformable lung phantom. Phys. Med., 76, 16–27. https://doi.org/10.1016/j.ejmp.2020.05.019.GholampourkashiS.CyglerJ. E.LavigneB.HeathE.2020Validation of 4D Monte Carlo dose calculations using a programmable deformable lung phantomPhys. Med.761627https://doi.org/10.1016/j.ejmp.2020.05.019.Search in Google Scholar
Loussaief, A., Trabelsi, A., & Baccari, B. (2006). Extended gamma sources modelling using multipole expansion: Application to the Tunisian gamma source load planning. Radiat. Phys. Chem., 75(4), 463–472.LoussaiefA.TrabelsiA.BaccariB.2006Extended gamma sources modelling using multipole expansion: Application to the Tunisian gamma source load planningRadiat. Phys. Chem.754463472Search in Google Scholar
Loussaief, A., & Trabelsi, A. (2007). Dose mapping using multipole moments. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 102–105.LoussaiefA.TrabelsiA.2007Dose mapping using multipole momentsNucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ.5801102105Search in Google Scholar
Rezaeian, P., Ataenia, V., & Shafiei, S. (2017). An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220. Radiat. Phys. Chem., 141, 339–345. https://doi.org/10.1016/j.radphyschem.2017.08.003.RezaeianP.AtaeniaV.ShafieiS.2017An analytical method based on multipole moment expansion to calculate the flux distribution in Gammacell-220Radiat. Phys. Chem.141339345https://doi.org/10.1016/j.radphyschem.2017.08.003.Search in Google Scholar
Belkadhi, K., & Manai, K. (2016). Dose calculation using a numerical method based on Haar wavelets integration. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 812, 73–80. https://doi.org/10.1016/j.nima.2015.12.057.BelkadhiK.ManaiK.2016Dose calculation using a numerical method based on Haar wavelets integrationNucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ.8127380https://doi.org/10.1016/j.nima.2015.12.057.Search in Google Scholar
Singh, M., & Datta, D. (2020). Development of an algorithm for gamma dose mapping in irradiated product using TOPSIS and its validation. Radiat. Phys. Chem., 177, 109123. https://doi.org/10.1016/j.radphyschem.2020.109123.SinghM.DattaD.2020Development of an algorithm for gamma dose mapping in irradiated product using TOPSIS and its validationRadiat. Phys. Chem.177109123https://doi.org/10.1016/j.radphyschem.2020.109123.Search in Google Scholar
Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Khankin, V. V., & Krusanov, G. A. (2021). Impact of aluminum plates on uniformity of depth dose distribution in object during electron processing. Mosc. Univ. Phys. Bull., 76(1), S1–S7. https://doi.org/10.3103/S0027134922010106.StudenikinF. R.BliznyukU. A.ChernyaevA. P.KhankinV. V.KrusanovG. A.2021Impact of aluminum plates on uniformity of depth dose distribution in object during electron processingMosc. Univ. Phys. Bull.761S1S7https://doi.org/10.3103/S0027134922010106.Search in Google Scholar
Studenikin, F. R., Bliznyuk, U. A., Chernyaev, A. P., Krusanov, G. A., Nikitchenko, A. D., Zolotov, S. A., & Ipatova, V. S. (2023). Electron beam modification for improving dose uniformity in irradiated objects. Eur. Phys. J. Spec. Top., 232(10), 1631–1635. https://doi.org/10.1140/epjs/s11734-023-00886-6.StudenikinF. R.BliznyukU. A.ChernyaevA. P.KrusanovG. A.NikitchenkoA. D.ZolotovS. A.IpatovaV. S.2023Electron beam modification for improving dose uniformity in irradiated objectsEur. Phys. J. Spec. Top.2321016311635https://doi.org/10.1140/epjs/s11734-023-00886-6.Search in Google Scholar
Bliznyuk, U. A., Borshchegovskaya, P. Y., Zolotov, S. A., Ipatova, V. S., Krusanov, G. A., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2022). Determining the electron beam spectrum after passing through aluminum plates. Mosc. Univ. Phys. Bull., 77(4), 615–621. https://doi.org/10.3103/S0027134922040038.BliznyukU. A.BorshchegovskayaP. Y.ZolotovS. A.IpatovaV. S.KrusanovG. A.NikitchenkoA. D.StudenikinF. R.ChernyaevA. P.2022Determining the electron beam spectrum after passing through aluminum platesMosc. Univ. Phys. Bull.774615621https://doi.org/10.3103/S0027134922040038.Search in Google Scholar
Bliznyuk, U. A., Avdyukhina, V. M., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, A. P. (2021). Estimating the accuracy of reconstructing bichromatic spectra of electron beams from depth dose distributions. Bull. Russ. Acad. Sci. Phys., 85(10), 1108–1112. https://doi.org/10.3103/S1062873821100099.BliznyukU. A.AvdyukhinaV. M.BorshchegovskayaP. Y.IpatovaV. S.NikitchenkoA. D.StudenikinF. R.ChernyaevA. P.2021Estimating the accuracy of reconstructing bichromatic spectra of electron beams from depth dose distributionsBull. Russ. Acad. Sci. Phys.851011081112https://doi.org/10.3103/S1062873821100099.Search in Google Scholar
Bliznyuk, U. A., Borshchegovskaya, P. Y., Ipatova, V. S., Nikitchenko, A. D., Studenikin, F. R., & Chernyaev, P. (2022). Determining the beam spectrum of industrial electron accelerator using depth dose distribution. Bull. Russ. Acad. Sci. Phys., 86(4), 500–507. https://doi.org/10.3103/S1062873822040062.BliznyukU. A.BorshchegovskayaP. Y.IpatovaV. S.NikitchenkoA. D.StudenikinF. R.ChernyaevP.2022Determining the beam spectrum of industrial electron accelerator using depth dose distributionBull. Russ. Acad. Sci. Phys.864500507https://doi.org/10.3103/S1062873822040062.Search in Google Scholar
Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry. Appl. Radiat. Isot., 57(4), 537–542. https://doi.org/10.1016/S0969-8043(02)00130-6.SohrabpourM.HassanzadehM.ShahriariM.SharifzadehM.2002Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetryAppl. Radiat. Isot.574537542https://doi.org/10.1016/S0969-8043(02)00130-6.Search in Google Scholar
Sohrabpour, M., Hassanzadeh, M., Shahriari, M., & Sharifzadeh, M. (2002). Dose distribution of the IR-136 irradiator using a Monte Carlo code and comparison with dosimetry. Radiat. Phys. Chem., 63, 769–772.SohrabpourM.HassanzadehM.ShahriariM.SharifzadehM.2002Dose distribution of the IR-136 irradiator using a Monte Carlo code and comparison with dosimetryRadiat. Phys. Chem.63769772Search in Google Scholar
Raisali, G. R., & Sohrabpour, M. (1993). Application of EGS4 computer code for determination of gamma ray spectrum and dose rate distribution in Gammacell 220. Radiat. Phys. Chem., 42, 799–805.RaisaliG. R.SohrabpourM.1993Application of EGS4 computer code for determination of gamma ray spectrum and dose rate distribution in Gammacell 220Radiat. Phys. Chem.42799805Search in Google Scholar
Weiss, D. E., & Stangeland, R. J. (2003). Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo code. Radiat. Phys. Chem., 68(6), 947–958.WeissD. E.StangelandR. J.2003Dose prediction and process optimization in a gamma sterilization facility using 3-D Monte Carlo codeRadiat. Phys. Chem.686947958Search in Google Scholar
Oliveira, C., Salgado, J., Botelho, M. L., & Ferreira, L. M. (2000). Dose determination by Monte Carlo – A useful tool in gamma radiation process. Radiat. Phys. Chem., 57(3/6), 667–670.OliveiraC.SalgadoJ.BotelhoM. L.FerreiraL. M.2000Dose determination by Monte Carlo – A useful tool in gamma radiation processRadiat. Phys. Chem.573/6667670Search in Google Scholar
Oliveira, C., Salgado, J., & Ferro De Carvalho, A. (2000). Dose rate determinations in the Portuguese gamma irradiation facility: Monte Carlo simulations and measurements. Radiat. Phys. Chem., 58(3), 279–285.OliveiraC.SalgadoJ.Ferro De CarvalhoA.2000Dose rate determinations in the Portuguese gamma irradiation facility: Monte Carlo simulations and measurementsRadiat. Phys. Chem.583279285Search in Google Scholar
Belchior, A., Botelho, M. L., & Vaz, P. (2007). Monte Carlo simulations and dosimetric studies of an irradiation facility. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 580(1), 70–72. https://doi.org/10.1016/j.nima.2007.05.040.BelchiorA.BotelhoM. L.VazP.2007Monte Carlo simulations and dosimetric studies of an irradiation facilityNucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ.58017072https://doi.org/10.1016/j.nima.2007.05.040.Search in Google Scholar
Portugal, L., Cardoso, J., & Oliveira, C. (2010). Monte Carlo validation of the irradiator parameters of the Portuguese gamma irradiation facility after its replenishment. Appl. Radiat. Isot., 68(1), 190–195.PortugalL.CardosoJ.OliveiraC.2010Monte Carlo validation of the irradiator parameters of the Portuguese gamma irradiation facility after its replenishmentAppl. Radiat. Isot.681190195Search in Google Scholar
Gharbi, F., Kadri, O., Farah, K., & Mannai, K. (2005). Validation of GEANT code of CERN as predictive tool of dose rate measurement in the Tunisian gamma irradiation facility. Radiat. Phys. Chem., 74(2), 102–110.GharbiF.KadriO.FarahK.MannaiK.2005Validation of GEANT code of CERN as predictive tool of dose rate measurement in the Tunisian gamma irradiation facilityRadiat. Phys. Chem.742102110Search in Google Scholar
Kadri, O., Gharbi, F., & Farah, K. (2005). Monte Carlo improvement of dose uniformity in gamma irradiation processing using the GEANT4 code. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 239(4), 391–398.KadriO.GharbiF.FarahK.2005Monte Carlo improvement of dose uniformity in gamma irradiation processing using the GEANT4 codeNucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms2394391398Search in Google Scholar
Ounalli, L., Bhar, M., Mejri, A., Manai, K., Bouabidi, A., Abdallah, S. M., & Reguigui, N. (2017). Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the source. Nucl. Sci. Tech., 28(9), 1–10. https://doi.org/10.1007/s41365-017-0289-5.OunalliL.BharM.MejriA.ManaiK.BouabidiA.AbdallahS. M.ReguiguiN.2017Combining Monte Carlo simulations and dosimetry measurements for process control in the Tunisian Cobalt-60 irradiator after three half lives of the sourceNucl. Sci. Tech.289110https://doi.org/10.1007/s41365-017-0289-5.Search in Google Scholar
Kim, Y. H., & Park, J. W. (2008). Dose rate simulation of a panoramic gamma irradiator using the MCNPX code and comparison with measurements. J. Nucl. Sci. Technol., 45, 325–328. https://doi.org/10.1080/00223131.2008.10875854.KimY. H.ParkJ. W.2008Dose rate simulation of a panoramic gamma irradiator using the MCNPX code and comparison with measurementsJ. Nucl. Sci. Technol.45325328https://doi.org/10.1080/00223131.2008.10875854.Search in Google Scholar
Kang, C. M., Jung, S. T., Pyo, S. H., Seo, Y., Kang, W. G., Kim, J. K., Nho, Y. C., Park, J. S., & Choi, J. H. (2023). Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulations. Nucl. Eng. Technol., 55(12), 4678–4684. https://doi.org/10.1016/j.net.2023.09.004.KangC. M.JungS. T.PyoS. H.SeoY.KangW. G.KimJ. K.NhoY. C.ParkJ. S.ChoiJ. H.2023Characterization of the 2.5 MeV ELV electron accelerator electron source angular distribution using 3-D dose measurement and Monte Carlo simulationsNucl. Eng. Technol.551246784684https://doi.org/10.1016/j.net.2023.09.004.Search in Google Scholar
Khattab, K., Boush, M., & Alkassiri, H. (2013). Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking. Ann. Nucl. Energy, 58, 110–112. https://doi.org/10.1016/j.anucene.2012.11.009.KhattabK.BoushM.AlkassiriH.2013Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarkingAnn. Nucl. Energy58110112https://doi.org/10.1016/j.anucene.2012.11.009.Search in Google Scholar
Mortuza, M. F., Lepore, L., Khedkar, K., Thangam, S., Nahar, A., Jamil, H. M., Bandi, L., & Alam, Md K. (2018). Comissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation data. Radiat. Phys. Chem., 144, 256–264. https://doi.org/10.1016/j.radphyschem.2017.08.022.MortuzaM. F.LeporeL.KhedkarK.ThangamS.NaharA.JamilH. M.BandiL.AlamMd K.2018Comissioning dosimetry and in situ dose mapping of a semi-industrial Cobalt-60 gamma-irradiation facility using Fricke and Ceric-cerous dosimetry system and comparison with Monte Carlo simulation dataRadiat. Phys. Chem.144256264https://doi.org/10.1016/j.radphyschem.2017.08.022.Search in Google Scholar
Gual, M. R., Milian, F. M., Mesquita, A. Z., & Pereira, C. (2017). New source models to represent the irradiation process in panoramic gamma irradiator. Appl. Radiat. Isot., 128, 175–182. https://doi.org/10.1016/j.apradiso.2017.06.046.GualM. R.MilianF. M.MesquitaA. Z.PereiraC.2017New source models to represent the irradiation process in panoramic gamma irradiatorAppl. Radiat. Isot.128175182https://doi.org/10.1016/j.apradiso.2017.06.046.Search in Google Scholar
Gual, M. R., Mesquita, A. Z., Ribeiro, E., & Grossi, P. A. (2017). Shielding verifications for a gamma irradiation facility considering the installation of a new automatic product loading system. Sci. Technol. Nucl. Install., 2017, 1–6. https://doi.org/10.1155/2017/7408645.GualM. R.MesquitaA. Z.RibeiroE.GrossiP. A.2017Shielding verifications for a gamma irradiation facility considering the installation of a new automatic product loading systemSci. Technol. Nucl. Install.201716https://doi.org/10.1155/2017/7408645.Search in Google Scholar
Gual, M. R., Pereira, C., & Mesquita, A. Z. (2019). Application of a new source model of a panoramic gamma irradiator on dose map formation in an irradiated product. Appl. Radiat. Isot., 144, 87–92. https://doi.org/10.1016/j.apradiso.2018.12.002.GualM. R.PereiraC.MesquitaA. Z.2019Application of a new source model of a panoramic gamma irradiator on dose map formation in an irradiated productAppl. Radiat. Isot.1448792https://doi.org/10.1016/j.apradiso.2018.12.002.Search in Google Scholar
Aknouch, A., Elouardi, Y., Mouhib, M., Sebihi, R., Didi, A., & Choukri, A. (2020). New approach to make cylindrical packaging products in rotation around their fixed axis during irradiation in the Monte Carlo simulation. Mosc. Univ. Phys. Bull., 75(5), 447–450. https://doi.org/10.3103/S0027134920050045.AknouchA.ElouardiY.MouhibM.SebihiR.DidiA.ChoukriA.2020New approach to make cylindrical packaging products in rotation around their fixed axis during irradiation in the Monte Carlo simulationMosc. Univ. Phys. Bull.755447450https://doi.org/10.3103/S0027134920050045.Search in Google Scholar
Aknouch, A., Mouhib, M., Sebihi, R., Didi, A., El-Ouardi, Y., Boubekraoui, A., & Choukri, A. (2020). Monte Carlo simulation of the dose rate distribution of a Moroccan panoramic gamma irradiator using the MCNPX code. Mosc. Univ. Phys. Bull., 75(1), 35–38. https://doi.org/10.3103/S0027134920010026.AknouchA.MouhibM.SebihiR.DidiA.El-OuardiY.BoubekraouiA.ChoukriA.2020Monte Carlo simulation of the dose rate distribution of a Moroccan panoramic gamma irradiator using the MCNPX codeMosc. Univ. Phys. Bull.7513538https://doi.org/10.3103/S0027134920010026.Search in Google Scholar
Kataoka, N., Kawahara, D., & Sekiguchi, M. (2021). Surface treatment of eggshells with low-energy electron beam. J. Radiat. Prot. Res., 46(1), 8–13. https://doi.org/10.14407/JRPR.2020.KataokaN.KawaharaD.SekiguchiM.2021Surface treatment of eggshells with low-energy electron beamJ. Radiat. Prot. Res.461813https://doi.org/10.14407/JRPR.2020.Search in Google Scholar