Optimization Driven Variational Autoencoder GAN for Artifact Reduction in EEG Signals for Improved Neurological Disorder and Disability Assessment
24 lut 2025
O artykule
Data publikacji: 24 lut 2025
Zakres stron: 10 - 14
Otrzymano: 04 cze 2024
Przyjęty: 16 sty 2025
DOI: https://doi.org/10.2478/msr-2025-0002
Słowa kluczowe
© 2025 Mohamed Yacin Sikkandar et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Accuracy performance of the proposed BrOpt_VAGAN model_
Mixtures of artifact components | Accuracy [%] | Error [%] | |
---|---|---|---|
Pseudo-clean | brain | 98.5 | 12.41 |
eye | 96.2 | 11.53 | |
muscle | 97.3 | 12.74 | |
Noisy input | brain | 98.6 | 11.84 |
eye | 95.9 | 11.90 | |
muscle | 93.5 | 12.56 |