Optimization Driven Variational Autoencoder GAN for Artifact Reduction in EEG Signals for Improved Neurological Disorder and Disability Assessment
24. Feb. 2025
Über diesen Artikel
Online veröffentlicht: 24. Feb. 2025
Seitenbereich: 10 - 14
Eingereicht: 04. Juni 2024
Akzeptiert: 16. Jan. 2025
DOI: https://doi.org/10.2478/msr-2025-0002
Schlüsselwörter
© 2025 Mohamed Yacin Sikkandar et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Accuracy performance of the proposed BrOpt_VAGAN model_
Mixtures of artifact components | Accuracy [%] | Error [%] | |
---|---|---|---|
Pseudo-clean | brain | 98.5 | 12.41 |
eye | 96.2 | 11.53 | |
muscle | 97.3 | 12.74 | |
Noisy input | brain | 98.6 | 11.84 |
eye | 95.9 | 11.90 | |
muscle | 93.5 | 12.56 |