Optimization Driven Variational Autoencoder GAN for Artifact Reduction in EEG Signals for Improved Neurological Disorder and Disability Assessment
24 févr. 2025
À propos de cet article
Publié en ligne: 24 févr. 2025
Pages: 10 - 14
Reçu: 04 juin 2024
Accepté: 16 janv. 2025
DOI: https://doi.org/10.2478/msr-2025-0002
Mots clés
© 2025 Mohamed Yacin Sikkandar et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Accuracy performance of the proposed BrOpt_VAGAN model_
Mixtures of artifact components | Accuracy [%] | Error [%] | |
---|---|---|---|
Pseudo-clean | brain | 98.5 | 12.41 |
eye | 96.2 | 11.53 | |
muscle | 97.3 | 12.74 | |
Noisy input | brain | 98.6 | 11.84 |
eye | 95.9 | 11.90 | |
muscle | 93.5 | 12.56 |