Accès libre

Optimization Driven Variational Autoencoder GAN for Artifact Reduction in EEG Signals for Improved Neurological Disorder and Disability Assessment

, , , , ,  et   
24 févr. 2025
À propos de cet article

Citez
Télécharger la couverture

Fig. 1.

BSO-VAE-GAN architecture for artifact reduction.
BSO-VAE-GAN architecture for artifact reduction.

Fig. 2.

Comparison of MSE with the EEG+brain signal artifact.
Comparison of MSE with the EEG+brain signal artifact.

Fig. 3.

Comparison of MSE with the EEG+eye signal artifact.
Comparison of MSE with the EEG+eye signal artifact.

Fig. 4.

Comparison of MSE with the EEG+muscle signal artifact.
Comparison of MSE with the EEG+muscle signal artifact.

Accuracy performance of the proposed BrOpt_VAGAN model_

Mixtures of artifact components Accuracy [%] Error [%]
Pseudo-clean brain 98.5 12.41
eye 96.2 11.53
muscle 97.3 12.74

Noisy input brain 98.6 11.84
eye 95.9 11.90
muscle 93.5 12.56