Prediction of the Natural Gas Compressibility Factor by using MLP and RBF Artificial Neural Networks
24 lut 2025
O artykule
Data publikacji: 24 lut 2025
Zakres stron: 1 - 9
Otrzymano: 18 lip 2024
Przyjęty: 08 sty 2025
DOI: https://doi.org/10.2478/msr-2025-0001
Słowa kluczowe
© 2025 Neven Kanchev et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Comparative analysis of LM and SCGD algorithms_
Algorithm | ||||
---|---|---|---|---|
LM | 0.99032 | 0.0581 | 0.1206 | 0.087 |
SCGD | 0.94229 | 0.0953 | 0.1543 | 0.1144 |
Comparison between MLP and RBF models_
Type ANN | ||||
---|---|---|---|---|
MLP-ANN | 0.99032 | 0.0581 | 0.1206 | 0.087 |
RBF-ANN | 0.99899 | 0.000729 | 0.0135 | 0.0075 |
Tested combination of activation functions of MLP-ANN_
Activation function hidden layer | Activation function output layer | ||||
---|---|---|---|---|---|
tansig | tansig | 0.99032 | 0.0581 | 0.1206 | 0.087 |
tansig | purelin | 0.99219 | 0.3866 | 0.3109 | 0.2363 |
logsig | tansig | 0.94438 | 0.1034 | 0.1607 | 0.1072 |
logsig | purelin | 0.98062 | 0.6353 | 0.3985 | 0.3117 |
purelin | tansig | 0.82875 | 0.1136 | 0.1685 | 0.1184 |
logsig | logsig | 0.83831 | 0.2505 | 0.2502 | 0.1884 |
tansig | logsig | 0.85305 | 0.2536 | 0.2518 | 0.195 |
purelin | logsig | 0.68672 | 0.2955 | 0.2718 | 0.2067 |
Influence of hidden neurons of RBF-ANN_
Spread value | Neurons | ||||
---|---|---|---|---|---|
0.1 | 140 | 0.99899 | 0.00073 | 0.0135 | 0.0075 |
0.3 | 140 | 0.99742 | 0.0019 | 0.0215 | 0.0108 |
0.5 | 140 | 0.99477 | 0.0038 | 0.0306 | 0.014 |
0.1 | 130 | 0.9973 | 0.0019 | 0.022 | 0.0141 |
0.3 | 130 | 0.99257 | 0.0053 | 0.0365 | 0.0181 |
0.5 | 130 | 0.99272 | 0.0052 | 0.0361 | 0.0177 |
0.1 | 120 | 0.9936 | 0.0046 | 0.0339 | 0.02 |
0.3 | 120 | 0.98875 | 0.0081 | 0.0449 | 0.0268 |
0.5 | 120 | 0.98833 | 0.0084 | 0.0457 | 0.0266 |