Prediction of the Natural Gas Compressibility Factor by using MLP and RBF Artificial Neural Networks
24 feb 2025
INFORMAZIONI SU QUESTO ARTICOLO
Pubblicato online: 24 feb 2025
Pagine: 1 - 9
Ricevuto: 18 lug 2024
Accettato: 08 gen 2025
DOI: https://doi.org/10.2478/msr-2025-0001
Parole chiave
© 2025 Neven Kanchev et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Comparative analysis of LM and SCGD algorithms_
Algorithm | ||||
---|---|---|---|---|
LM | 0.99032 | 0.0581 | 0.1206 | 0.087 |
SCGD | 0.94229 | 0.0953 | 0.1543 | 0.1144 |
Comparison between MLP and RBF models_
Type ANN | ||||
---|---|---|---|---|
MLP-ANN | 0.99032 | 0.0581 | 0.1206 | 0.087 |
RBF-ANN | 0.99899 | 0.000729 | 0.0135 | 0.0075 |
Tested combination of activation functions of MLP-ANN_
Activation function hidden layer | Activation function output layer | ||||
---|---|---|---|---|---|
tansig | tansig | 0.99032 | 0.0581 | 0.1206 | 0.087 |
tansig | purelin | 0.99219 | 0.3866 | 0.3109 | 0.2363 |
logsig | tansig | 0.94438 | 0.1034 | 0.1607 | 0.1072 |
logsig | purelin | 0.98062 | 0.6353 | 0.3985 | 0.3117 |
purelin | tansig | 0.82875 | 0.1136 | 0.1685 | 0.1184 |
logsig | logsig | 0.83831 | 0.2505 | 0.2502 | 0.1884 |
tansig | logsig | 0.85305 | 0.2536 | 0.2518 | 0.195 |
purelin | logsig | 0.68672 | 0.2955 | 0.2718 | 0.2067 |
Influence of hidden neurons of RBF-ANN_
Spread value | Neurons | ||||
---|---|---|---|---|---|
0.1 | 140 | 0.99899 | 0.00073 | 0.0135 | 0.0075 |
0.3 | 140 | 0.99742 | 0.0019 | 0.0215 | 0.0108 |
0.5 | 140 | 0.99477 | 0.0038 | 0.0306 | 0.014 |
0.1 | 130 | 0.9973 | 0.0019 | 0.022 | 0.0141 |
0.3 | 130 | 0.99257 | 0.0053 | 0.0365 | 0.0181 |
0.5 | 130 | 0.99272 | 0.0052 | 0.0361 | 0.0177 |
0.1 | 120 | 0.9936 | 0.0046 | 0.0339 | 0.02 |
0.3 | 120 | 0.98875 | 0.0081 | 0.0449 | 0.0268 |
0.5 | 120 | 0.98833 | 0.0084 | 0.0457 | 0.0266 |