Prediction of the Natural Gas Compressibility Factor by using MLP and RBF Artificial Neural Networks
24. Feb. 2025
Über diesen Artikel
Online veröffentlicht: 24. Feb. 2025
Seitenbereich: 1 - 9
Eingereicht: 18. Juli 2024
Akzeptiert: 08. Jan. 2025
DOI: https://doi.org/10.2478/msr-2025-0001
Schlüsselwörter
© 2025 Neven Kanchev et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Comparative analysis of LM and SCGD algorithms_
Algorithm | ||||
---|---|---|---|---|
LM | 0.99032 | 0.0581 | 0.1206 | 0.087 |
SCGD | 0.94229 | 0.0953 | 0.1543 | 0.1144 |
Comparison between MLP and RBF models_
Type ANN | ||||
---|---|---|---|---|
MLP-ANN | 0.99032 | 0.0581 | 0.1206 | 0.087 |
RBF-ANN | 0.99899 | 0.000729 | 0.0135 | 0.0075 |
Tested combination of activation functions of MLP-ANN_
Activation function hidden layer | Activation function output layer | ||||
---|---|---|---|---|---|
tansig | tansig | 0.99032 | 0.0581 | 0.1206 | 0.087 |
tansig | purelin | 0.99219 | 0.3866 | 0.3109 | 0.2363 |
logsig | tansig | 0.94438 | 0.1034 | 0.1607 | 0.1072 |
logsig | purelin | 0.98062 | 0.6353 | 0.3985 | 0.3117 |
purelin | tansig | 0.82875 | 0.1136 | 0.1685 | 0.1184 |
logsig | logsig | 0.83831 | 0.2505 | 0.2502 | 0.1884 |
tansig | logsig | 0.85305 | 0.2536 | 0.2518 | 0.195 |
purelin | logsig | 0.68672 | 0.2955 | 0.2718 | 0.2067 |
Influence of hidden neurons of RBF-ANN_
Spread value | Neurons | ||||
---|---|---|---|---|---|
0.1 | 140 | 0.99899 | 0.00073 | 0.0135 | 0.0075 |
0.3 | 140 | 0.99742 | 0.0019 | 0.0215 | 0.0108 |
0.5 | 140 | 0.99477 | 0.0038 | 0.0306 | 0.014 |
0.1 | 130 | 0.9973 | 0.0019 | 0.022 | 0.0141 |
0.3 | 130 | 0.99257 | 0.0053 | 0.0365 | 0.0181 |
0.5 | 130 | 0.99272 | 0.0052 | 0.0361 | 0.0177 |
0.1 | 120 | 0.9936 | 0.0046 | 0.0339 | 0.02 |
0.3 | 120 | 0.98875 | 0.0081 | 0.0449 | 0.0268 |
0.5 | 120 | 0.98833 | 0.0084 | 0.0457 | 0.0266 |