Otwarty dostęp

The structure and properties of laser-cladded Inconel 625/TiC composite coatings


Zacytuj

Mehta J, Mittal VK, Gupta P. Role of thermal spray coatings on wear, erosion and corrosion behavior: a review. J Appl Sci Eng. 2017;20(4):445–452. https://doi.org/10.6180/jase.2017.20.4.05 MehtaJ MittalVK GuptaP Role of thermal spray coatings on wear, erosion and corrosion behavior: a review J Appl Sci Eng 2017 20 4 445 452 https://doi.org/10.6180/jase.2017.20.4.05 Search in Google Scholar

Lisiecki A. Tribology and surface engineering. Coatings. 2019;9(10):663. https://doi.org/10.3390/coatings9100663 LisieckiA Tribology and surface engineering Coatings 2019 9 10 663 https://doi.org/10.3390/coatings9100663 Search in Google Scholar

Ostovan F, Hasanzadeh E, Toozandehjani M, Shafiei E, Jamaluddin KR, Amrin A. Microstructure, hardness and corrosion behavior of gas tungsten arc welding clad inconel 625 super alloy over A517 carbon steel using ERNiCrMo3 filler metal. J Mater Eng Perform. 2020;29:6919–6930. https://doi.org/10.1007/s11665-020-05178-x OstovanF HasanzadehE ToozandehjaniM ShafieiE JamaluddinKR AmrinA Microstructure, hardness and corrosion behavior of gas tungsten arc welding clad inconel 625 super alloy over A517 carbon steel using ERNiCrMo3 filler metal J Mater Eng Perform 2020 29 6919 6930 https://doi.org/10.1007/s11665-020-05178-x Search in Google Scholar

Jamrozik W, Górka J, Wyględacz B, Kiel-Jamrozik M. FEM-based thermogram correction for Inconel 625 joint hardness clustering. Materials. 2022;15(3):1113. https://doi.org/10.3390/ma15031113 JamrozikW GórkaJ WyględaczB Kiel-JamrozikM FEM-based thermogram correction for Inconel 625 joint hardness clustering Materials 2022 15 3 1113 https://doi.org/10.3390/ma15031113 Search in Google Scholar

Scendo M, Staszewska-Samson K, Danielewski H. Corrosion behavior of Inconel 625 coating produced by laser cladding. Coatings. 2021;11(7):759. https://doi.org/10.3390/coatings11070759 ScendoM Staszewska-SamsonK DanielewskiH Corrosion behavior of Inconel 625 coating produced by laser cladding Coatings 2021 11 7 759 https://doi.org/10.3390/coatings11070759 Search in Google Scholar

Czupryński A, Żuk M. Matrix composite coatings deposited on AISI 4715 steel by powder plasma-transferred arc welding. Materials. 2021;14(20):6066. https://doi.org/10.3390/ma14206066 CzupryńskiA ŻukM Matrix composite coatings deposited on AISI 4715 steel by powder plasma-transferred arc welding Materials 2021 14 20 6066 https://doi.org/10.3390/ma14206066 Search in Google Scholar

Lont A, Górka J, Janicki D, Matus K. The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere. Coatings. 2022;12(2):227. https://doi.org/10.3390/coatings12020227 LontA GórkaJ JanickiD MatusK The laser alloying process of ductile cast iron surface with titanium powder in nitrogen atmosphere Coatings 2022 12 2 227 https://doi.org/10.3390/coatings12020227 Search in Google Scholar

Abioye TE, McCartney DG, Clare AT. Laser cladding of Inconel 625 wire for corrosion protection. J Mater Process Technol. 2015;217:232–40. https://doi.org/10.1016/j.jmatprotec.2014.10.024 AbioyeTE McCartneyDG ClareAT Laser cladding of Inconel 625 wire for corrosion protection J Mater Process Technol 2015 217 232 40 https://doi.org/10.1016/j.jmatprotec.2014.10.024 Search in Google Scholar

Janicki D, Musztyfaga-Staszuk M. Direct diode laser cladding of Inconel 625/WC composite coatings. J Mech Eng. 2016;62:363–72. https://doi.org/10.5545/sv-jme.2015.3194 JanickiD Musztyfaga-StaszukM Direct diode laser cladding of Inconel 625/WC composite coatings J Mech Eng 2016 62 363 72 https://doi.org/10.5545/sv-jme.2015.3194 Search in Google Scholar

Janicki D. Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles. Opt Laser Technol. 2017;94:6–14. https://doi.org/10.1016/j.optlastec.2017.03.007 JanickiD Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles Opt Laser Technol 2017 94 6 14 https://doi.org/10.1016/j.optlastec.2017.03.007 Search in Google Scholar

Nurminen J, Nakki J, Vuoristo P. Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding. Int J Refract Met Hard Mater. 2009;27:472–8. https://doi.org/10.1016/j.ijrmhm.2008.10.008 NurminenJ NakkiJ VuoristoP Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding Int J Refract Met Hard Mater 2009 27 472 8 https://doi.org/10.1016/j.ijrmhm.2008.10.008 Search in Google Scholar

Xu X, Mi G, Xiong L, Jiang P, Shao X, Wang C. Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire. J Alloys Compd. 2018;740:16–27. https://doi.org/10.1016/j.jallcom.2017.12.298 XuX MiG XiongL JiangP ShaoX WangC Morphologies, microstructures and properties of TiC particle reinforced Inconel 625 coatings obtained by laser cladding with wire J Alloys Compd 2018 740 16 27 https://doi.org/10.1016/j.jallcom.2017.12.298 Search in Google Scholar

Kim SH, Shin GH, Kim BK, Kim KT, Yang DY, Aranas C, et al. Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion. Sci Rep. 2017;7:14359. https://doi.org/10.1038/s41598-017-14713-1 KimSH ShinGH KimBK KimKT YangDY AranasC Thermo-mechanical improvement of Inconel 718 using ex situ boron nitride-reinforced composites processed by laser powder bed fusion Sci Rep 2017 7 14359 https://doi.org/10.1038/s41598-017-14713-1 Search in Google Scholar

Shivalingaiah K, Sridhar KS, Sethuram D, Shivananda Murhty KV, Koppad PG, Ramesh CS. HVOF sprayed Inconel 718/cubic boron nitride composite coatings: microstructure, microhardness and slurry erosive behaviour. Mater Res Express. 2019;6(12):1265i8. Available from: https://iopscience.iop.org/article/10.1088/2053-1591/ab7067/meta ShivalingaiahK SridharKS SethuramD Shivananda MurhtyKV KoppadPG RameshCS HVOF sprayed Inconel 718/cubic boron nitride composite coatings: microstructure, microhardness and slurry erosive behaviour Mater Res Express 2019 6 12 1265i8 Available from: https://iopscience.iop.org/article/10.1088/2053-1591/ab7067/meta Search in Google Scholar

Tang B, Tan Y, Zhang Z, Xu T, Sun Z, Li X. Effects of process parameters on geometrical characteristics, microstructure and tribological properties of TiB2 reinforced Inconel 718 alloy composite coatings by laser cladding. Coatings. 2020;10:76. https://doi.org/10.3390/coatings10010076 TangB TanY ZhangZ XuT SunZ LiX Effects of process parameters on geometrical characteristics, microstructure and tribological properties of TiB2 reinforced Inconel 718 alloy composite coatings by laser cladding Coatings 2020 10 76 https://doi.org/10.3390/coatings10010076 Search in Google Scholar

Zhou S, Xu T, Hu C, Wu H, Liu H, Ma X. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding. Opt Laser Technol. 2021;140:106967. https://doi.org/10.1016/j.optlastec.2021.106967 ZhouS XuT HuC WuH LiuH MaX A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding Opt Laser Technol 2021 140 106967 https://doi.org/10.1016/j.optlastec.2021.106967 Search in Google Scholar

Deng P, Yao C, Feng K, Huang X, Li Z, Li Y, et al. Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating. Surf Coat Technol. 2018;335:334–44. https://doi.org/10.1016/j.surfcoat.2017.12.047 DengP YaoC FengK HuangX LiZ LiY Enhanced wear resistance of laser cladded graphene nanoplatelets reinforced Inconel 625 superalloy composite coating Surf Coat Technol 2018 335 334 44 https://doi.org/10.1016/j.surfcoat.2017.12.047 Search in Google Scholar

Kotarska A, Poloczek T, Janicki D. Characterization of the structure, mechanical properties and erosive resistance of the laser cladded Inconel 625-based coatings reinforced by TiC particles. Materials. 2021;14:2225. https://doi.org/10.3390/ma14092225 KotarskaA PoloczekT JanickiD Characterization of the structure, mechanical properties and erosive resistance of the laser cladded Inconel 625-based coatings reinforced by TiC particles Materials 2021 14 2225 https://doi.org/10.3390/ma14092225 Search in Google Scholar

Galevsky GV, Rudneva VV, Garbuzova AK, Valuev DV. Titanium carbide: nanotechnology, properties, application. IOP Conf Ser Mater Sci Eng. 2015;91:012017. https://doi.org/10.1088/1757-899X/91/1/012017 GalevskyGV RudnevaVV GarbuzovaAK ValuevDV Titanium carbide: nanotechnology, properties, application IOP Conf Ser Mater Sci Eng 2015 91 012017 https://doi.org/10.1088/1757-899X/91/1/012017 Search in Google Scholar

Gopinath M, Mullick S, Nath AK. Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings. Surf Coat Technol. 2020;399:126100. https://doi.org/10.1016/j.surfcoat.2020.126100 GopinathM MullickS NathAK Development of process maps based on molten pool thermal history during laser cladding of Inconel 718/TiC metal matrix composite coatings Surf Coat Technol 2020 399 126100 https://doi.org/10.1016/j.surfcoat.2020.126100 Search in Google Scholar

Cao S, Gu D. Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: relation of densification, microstructures and performance. J Mater Res. 2015;30(23):3616–28. https://doi.org/10.1557/jmr.2015.358 CaoS GuD Laser metal deposition additive manufacturing of TiC/Inconel 625 nanocomposites: relation of densification, microstructures and performance J Mater Res 2015 30 23 3616 28 https://doi.org/10.1557/jmr.2015.358 Search in Google Scholar

Jiang D, Hong C, Zhong M, Alkhayat M, Weisheit A, Gasser A, et al. Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control. Surf Coat Technol. 2014;249:125–31. https://doi.org/10.1016/j.surfcoat.2014.03.057 JiangD HongC ZhongM AlkhayatM WeisheitA GasserA Fabrication of nano-TiCp reinforced Inconel 625 composite coatings by partial dissolution of micro-TiCp through laser cladding energy input control Surf Coat Technol 2014 249 125 31 https://doi.org/10.1016/j.surfcoat.2014.03.057 Search in Google Scholar

Lian G, Zhang H, Zhang Y, Yao M, Huang X, Chen C. Computational and experimental investigation of micro-hardness and wear resistance of Ni-based alloy and TiC composite coating obtained by laser cladding. Materials. 2019;12(5):793. https://doi.org/10.3390/ma12050793 LianG ZhangH ZhangY YaoM HuangX ChenC Computational and experimental investigation of micro-hardness and wear resistance of Ni-based alloy and TiC composite coating obtained by laser cladding Materials 2019 12 5 793 https://doi.org/10.3390/ma12050793 Search in Google Scholar

Ge T, Chen L, Gu P, Ren X, Chen X. Microstructure and corrosion resistance of TiC/Inconel 625 composite coatings by extreme high speed laser cladding. Opt Laser Technol. 2022;150:107919. https://doi.org/10.1016/j.optastec.2022.107919 GeT ChenL GuP RenX ChenX Microstructure and corrosion resistance of TiC/Inconel 625 composite coatings by extreme high speed laser cladding Opt Laser Technol 2022 150 107919 https://doi.org/10.1016/j.optastec.2022.107919 Search in Google Scholar

Bakkar A, Ahmed MMZ, Alsaleh NA, El-Sayed Seleman MM, Ataya S. Microstructure, wear, and corrosion characterization of high TiC content Inconel 625 matrix composites. J Mater Res Technol. 2019;8(1):1102–1110. https://doi.org/10.1016/j.jmrt.2018.09.001 BakkarA AhmedMMZ AlsalehNA El-Sayed SelemanMM AtayaS Microstructure, wear, and corrosion characterization of high TiC content Inconel 625 matrix composites J Mater Res Technol 2019 8 1 1102 1110 https://doi.org/10.1016/j.jmrt.2018.09.001 Search in Google Scholar

Poloczek T, Janicki D, Górka J, Kotarska A. Effect of Ti and C alloyants on the microstructure of laser cladded cobalt-chromium coatings. IOP Conf Ser Mater Sci Eng. 2021;1182:012063. https://doi.org/10.1088/1757-899X/1182/1/012063 PoloczekT JanickiD GórkaJ KotarskaA Effect of Ti and C alloyants on the microstructure of laser cladded cobalt-chromium coatings IOP Conf Ser Mater Sci Eng 2021 1182 012063 https://doi.org/10.1088/1757-899X/1182/1/012063 Search in Google Scholar

Janicki D. Shaping the structure and properties of surface layers of ductile cast iron by laser alloying. Gliwice, Poland: Wydawnictwo Politechniki Śląskiej; 2018. p. 50. JanickiD Shaping the structure and properties of surface layers of ductile cast iron by laser alloying Gliwice, Poland Wydawnictwo Politechniki Śląskiej 2018 50 Search in Google Scholar

Cieslak MJ, Headley TJ, Romig AD, Kollie T. A melting and solidification study of alloy 625. Metall Mater Trans A 1988;19A:2319–31. Available from: doi:10.1007/BF02645056 CieslakMJ HeadleyTJ RomigAD KollieT A melting and solidification study of alloy 625 Metall Mater Trans A 1988 19A 2319 31 Available from: 10.1007/BF02645056 Open DOISearch in Google Scholar

Kotarska A. The laser alloying process of ductile cast iron surface with titanium. Metals. 2021;11(2):282. Available from doi: 10.3390/met11020282 KotarskaA The laser alloying process of ductile cast iron surface with titanium Metals 2021 11 2 282 Available from 10.3390/met11020282 Open DOISearch in Google Scholar

Łyczkowska K, Michalska J. Studies on the corrosion resistance of laser-welded Inconel 600 and Inconel 625 nickel-based superalloys. Arch Metall Mater 2017;62(2):653–6. https://doi.org/10.1515/amm-2017-0100 ŁyczkowskaK MichalskaJ Studies on the corrosion resistance of laser-welded Inconel 600 and Inconel 625 nickel-based superalloys Arch Metall Mater 2017 62 2 653 6 https://doi.org/10.1515/amm-2017-0100 Search in Google Scholar

Shvets VA, Lavrenko VA, Talash VN, Panasyuk AD, Rudenko YB. Anodic polarization of titanium carbide TiCx in 3% NaCl solution in the homogeneity range. Powder Metall Met Ceram. 2016;55:113–23. https://doi.org/10.1007/s11106-016-9829-5 ShvetsVA LavrenkoVA TalashVN PanasyukAD RudenkoYB Anodic polarization of titanium carbide TiCx in 3% NaCl solution in the homogeneity range Powder Metall Met Ceram 2016 55 113 23 https://doi.org/10.1007/s11106-016-9829-5 Search in Google Scholar

eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties