Otwarty dostęp

Effect of graphite nanoplatelets on spark plasma sintered and conventionally sintered aluminum-based nanocomposites developed by powder metallurgy


Zacytuj

Kumar HP, Xavior MA. Graphene reinforced metal matrix composite (GRMMC): A review. Procedia Eng. 2014;97:1033–40. https://doi.org/10.1016/j.proeng.2014.12.381 KumarHP XaviorMA Graphene reinforced metal matrix composite (GRMMC): A review Procedia Eng 2014 97 1033 40 https://doi.org/10.1016/j.proeng.2014.12.381 10.1016/j.proeng.2014.12.381 Search in Google Scholar

Miracle DB. Metal matrix composites – From science to technological significance. Compos Sci Technol. 2005;65:2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027 MiracleDB Metal matrix composites – From science to technological significance Compos Sci Technol 2005 65 2526 2540 https://doi.org/10.1016/j.compscitech.2005.05.027 10.1016/j.compscitech.2005.05.027 Search in Google Scholar

Moghadam AD, Schultz BF, Ferguson JB, Omrani E, Rohatgi PK, Gupta N. Functional metal matrix composites: Self-lubricating, self-healing, and nanocomposites-An Outlook. JOM. 2014;66:872–81. https://doi.org/10.1007/s11837-014-0948-5 MoghadamAD SchultzBF FergusonJB OmraniE RohatgiPK GuptaN Functional metal matrix composites: Self-lubricating, self-healing, and nanocomposites-An Outlook JOM 2014 66 872 81 https://doi.org/10.1007/s11837-014-0948-5 10.1007/s11837-014-0948-5 Search in Google Scholar

Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – A review. Compos Part B. 2015;77:402–20. https://doi.org/10.1016/j.compositesb.2015.03.014 MoghadamAD OmraniE MenezesPL RohatgiPK Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene – A review Compos Part B 2015 77 402 20 https://doi.org/10.1016/j.compositesb.2015.03.014 10.1016/j.compositesb.2015.03.014 Search in Google Scholar

Shin SE, Choi HJ, Shin JH, Bae DH. Strengthening behavior of few-layered graphene/aluminum composites. Carbon. 2015;82:143–51. https://doi.org/10.1016/j.carbon.2014.10.044 ShinSE ChoiHJ ShinJH BaeDH Strengthening behavior of few-layered graphene/aluminum composites Carbon 2015 82 143 51 https://doi.org/10.1016/j.carbon.2014.10.044 10.1016/j.carbon.2014.10.044 Search in Google Scholar

Bisht A, Srivastava M, Kumar RM, Lahiri I, Lahiri D. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng. 2017;695:20–8. https://doi.org/10.1016/j.msea.2017.04.009 BishtA SrivastavaM KumarRM LahiriI LahiriD Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering Mater Sci Eng 2017 695 20 8 https://doi.org/10.1016/j.msea.2017.04.009 10.1016/j.msea.2017.04.009 Search in Google Scholar

Georgakilas V, Perman JA, Tucek J, Zboril R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115:4744–822. https://doi.org/10.1021/cr500304f GeorgakilasV PermanJA TucekJ ZborilR Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures Chem Rev 2015 115 4744 822 https://doi.org/10.1021/cr500304f 10.1021/cr500304f26012488 Search in Google Scholar

Dixit S, Mahata A, Mahapatra DR, Kailas SV, Chattopadhyay K. Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction stir alloying. Compos Part B. 2018;136:63–71. https://doi.org/10.1016/j.compositesb.2017.10.028 DixitS MahataA MahapatraDR KailasSV ChattopadhyayK Multi-layer graphene reinforced aluminum – Manufacturing of high strength composite by friction stir alloying Compos Part B 2018 136 63 71 https://doi.org/10.1016/j.compositesb.2017.10.028 10.1016/j.compositesb.2017.10.028 Search in Google Scholar

Saboori A, Novara C, Pavese M, Badini C, Giorgis F, Fino P, An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy. J Mater Eng Perform. 2017;26:993–9. https://doi.org/10.1007/s11665-017-2522-0 SabooriA NovaraC PaveseM BadiniC GiorgisF FinoP An investigation on the sinterability and the compaction behavior of aluminum/graphene nanoplatelets (GNPs) prepared by powder metallurgy J Mater Eng Perform 2017 26 993 9 https://doi.org/10.1007/s11665-017-2522-0 10.1007/s11665-017-2522-0 Search in Google Scholar

Shrivastava P, Alam SN, Panda D, Sahoo SK, Maity T, Biswas K. Effect of addition of multi-walled carbon nanotube/graphite nanoplatelets hybrid on the mechanical properties of aluminium. Diam Relat Mater. 2020;104:107715. https://doi.org/10.1016/j.diamond.2020.107715 ShrivastavaP AlamSN PandaD SahooSK MaityT BiswasK Effect of addition of multi-walled carbon nanotube/graphite nanoplatelets hybrid on the mechanical properties of aluminium Diam Relat Mater 2020 104 107715. https://doi.org/10.1016/j.diamond.2020.107715 10.1016/j.diamond.2020.107715 Search in Google Scholar

Rashad M, Pan F, Tang A, Asif M. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci Mater Int. 2014;24:101–108. https://doi.org/10.1016/j.pnsc.2014.03.012 RashadM PanF TangA AsifM Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method Prog Nat Sci Mater Int 2014 24 101 108 https://doi.org/10.1016/j.pnsc.2014.03.012 10.1016/j.pnsc.2014.03.012 Search in Google Scholar

Yolshina LA, Muradymov RV, Vichuzhanin DI, Smirnova EO. Enhancement of the mechanical properties of aluminum-graphene composites. AIP Conference Proc. 2016;1785:040093. https://doi.org/10.1063/1.4967150 YolshinaLA MuradymovRV VichuzhaninDI SmirnovaEO Enhancement of the mechanical properties of aluminum-graphene composites AIP Conference Proc 2016 1785 040093 https://doi.org/10.1063/1.4967150 10.1063/1.4967150 Search in Google Scholar

Baradeswaran A, Perumal AE. Wear and mechanical characteristics of Al 7075/graphite composites. Compos Part B. 2014;56:472–6. https://doi.org/10.1016/j.compositesb.2013.08.073 BaradeswaranA PerumalAE Wear and mechanical characteristics of Al 7075/graphite composites Compos Part B 2014 56 472 6 https://doi.org/10.1016/j.compositesb.2013.08.073 10.1016/j.compositesb.2013.08.073 Search in Google Scholar

Kurşun A, Bayraktar E, Enginsoy HM. Experimental and numerical study of alumina reinforced aluminum matrix composites: Processing, microstructural aspects and properties. Compos Part B. 2016;90:302–14. https://doi.org/10.1016/j.compositesb.2016.01.006 KurşunA BayraktarE EnginsoyHM Experimental and numerical study of alumina reinforced aluminum matrix composites: Processing, microstructural aspects and properties Compos Part B 2016 90 302 14 https://doi.org/10.1016/j.compositesb.2016.01.006 10.1016/j.compositesb.2016.01.006 Search in Google Scholar

Bastwros M, Kim GY, Zhu C, Zhang K, Wang S, Tang X, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B. 2014;60:111–8. https://doi.org/10.1016/j.compositesb.2013.12.043 BastwrosM KimGY ZhuC ZhangK WangS TangX Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering Compos Part B 2014 60 111 8 https://doi.org/10.1016/j.compositesb.2013.12.043 10.1016/j.compositesb.2013.12.043 Search in Google Scholar

Shrivastava P, Alam SN, Panda D, Sahoo SK, Maity T, Biswas K. Development and mechanical properties investigation of Cu-MWCNT-graphite nanoplatelets hybrid nanocomposites. Diam Relat Mater. 2021;117:108467. https://doi.org/10.1016/j.diamond.2021.108467 ShrivastavaP AlamSN PandaD SahooSK MaityT BiswasK Development and mechanical properties investigation of Cu-MWCNT-graphite nanoplatelets hybrid nanocomposites Diam Relat Mater 2021 117 108467. https://doi.org/10.1016/j.diamond.2021.108467 10.1016/j.diamond.2021.108467 Search in Google Scholar

Boostani AF, Yazdani S, Mousavian RT, Tahamtan S, Khosroshahi RA, Wei D, et al. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites. Mater Des. 2015;88:983–9. https://doi.org/10.1007/s12633-019-00183-9 BoostaniAF YazdaniS MousavianRT TahamtanS KhosroshahiRA WeiD Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites Mater Des 2015 88 983 9 https://doi.org/10.1007/s12633-019-00183-9 10.1016/j.matdes.2015.09.063 Search in Google Scholar

Dasari BL, Nouri JM, Brabazon D, Naher S. Graphene and derivatives – Synthesis techniques, properties and their energy applications. Energy. 2017;140:766–78. https://doi.org/10.1016/j.energy.2017.08.048 DasariBL NouriJM BrabazonD NaherS Graphene and derivatives – Synthesis techniques, properties and their energy applications Energy 2017 140 766 78 https://doi.org/10.1016/j.energy.2017.08.048 10.1016/j.energy.2017.08.048 Search in Google Scholar

Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, et al. Graphene–aluminum nanocomposites. Mater Sci Eng A. 2011;528:7933–7. https://doi.org/10.1016/j.msea.2011.07.043 BartolucciSF ParasJ RafieeMA RafieeJ LeeS KapoorD Graphene–aluminum nanocomposites Mater Sci Eng A 2011 528 7933 7 https://doi.org/10.1016/j.msea.2011.07.043 10.1016/j.msea.2011.07.043 Search in Google Scholar

Ju JM, Wang G, Sim KH. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties. J Alloys Compd. 2017;704:585–92. https://doi.org/10.1016/j.jallcom.2017.01.314 JuJM WangG SimKH Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties J Alloys Compd 2017 704 585 92 https://doi.org/10.1016/j.jallcom.2017.01.314 10.1016/j.jallcom.2017.01.314 Search in Google Scholar

Dutkiewicz J, Ozga P, Maziarz W, Pstruś J, Kania B, Bobrowski P, et al. Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets. Mater Sci Eng A. 2015;628:124–34. https://doi.org/10.1016/j.msea.2015.01.018 DutkiewiczJ OzgaP MaziarzW PstruśJ KaniaB BobrowskiP Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets Mater Sci Eng A 2015 628 124 34 https://doi.org/10.1016/j.msea.2015.01.018 10.1016/j.msea.2015.01.018 Search in Google Scholar

Chang YH, Huang D, Jia C, Cui Z, Wang C, Liang D. Influence of plasma on the densification mechanism of SPS under multi-field effect. Int J Miner Metall Mater. 2014;21:906–12. https://doi.org/10.1007/s12613-014-0988-4 ChangYH HuangD JiaC CuiZ WangC LiangD Influence of plasma on the densification mechanism of SPS under multi-field effect Int J Miner Metall Mater 2014 21 906 12 https://doi.org/10.1007/s12613-014-0988-4 10.1007/s12613-014-0988-4 Search in Google Scholar

Nie JH, Jia CC, Shi N, Zhang Y, Li Y, Jia X. Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes. Int J Miner Metall Mater. 2011;18:695–702. https://doi.org/10.1007/s12613-011-0499-5 NieJH JiaCC ShiN ZhangY LiY JiaX Aluminum matrix composites reinforced by molybdenum-coated carbon nanotubes Int J Miner Metall Mater 2011 18 695 702 https://doi.org/10.1007/s12613-011-0499-5 10.1007/s12613-011-0499-5 Search in Google Scholar

Dimiev AM, Shukhina K, Behabtu N, Pasquali M, Tour JM. Stage transitions in graphite intercalation compounds: Role of the graphite structure. J Phys Chem C. 2019;123:19246–53. https://doi.org/10.1021/acs.jpcc.9b06726 DimievAM ShukhinaK BehabtuN PasqualiM TourJM Stage transitions in graphite intercalation compounds: Role of the graphite structure J Phys Chem C 2019 123 19246 53 https://doi.org/10.1021/acs.jpcc.9b06726 10.1021/acs.jpcc.9b06726 Search in Google Scholar

Walker P, editors. Handbook of Metal Etchants. 1st ed. New York: CRC Press; 2019. WalkerP editors Handbook of Metal Etchants 1st ed. New York CRC Press 2019 Search in Google Scholar

Naeem M, Kuan HC, Michelmore A, Yu S, Mouritz AP, Chelliah SS, et al. Epoxy/graphene nanocomposites prepared by in-situ microwaving. Carbon. 2021;177:271–81. https://doi.org/10.1016/j.carbon.2021.02.059 NaeemM KuanHC MichelmoreA YuS MouritzAP ChelliahSS Epoxy/graphene nanocomposites prepared by in-situ microwaving Carbon 2021 177 271 81 https://doi.org/10.1016/j.carbon.2021.02.059 10.1016/j.carbon.2021.02.059 Search in Google Scholar

Drzal LT, Fukushima H. Exfoliated graphite nanoplatelets (xGnP): A carbon nanotube alternative. NSTI Nanotech. 2006;1:170–3. DrzalLT FukushimaH Exfoliated graphite nanoplatelets (xGnP): A carbon nanotube alternative NSTI Nanotech 2006 1 170 3 Search in Google Scholar

Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, et al. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectros Relat Phenomena. 2014;195:145–54. https://doi.org/10.1016/j.elspec.2014.07.003 StobinskiL LesiakB MalolepszyA MazurkiewiczM MierzwaB ZemekJ Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods J Electron Spectros Relat Phenomena 2014 195 145 54 https://doi.org/10.1016/j.elspec.2014.07.003 10.1016/j.elspec.2014.07.003 Search in Google Scholar

Chen G, Weng W, Wu D, Wu C, Lu J, Wang P, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon. 2004;42:753–9. https://doi.org/10.1016/j.carbon.2003.12.074 ChenG WengW WuD WuC LuJ WangP Preparation and characterization of graphite nanosheets from ultrasonic powdering technique Carbon 2004 42 753 9 https://doi.org/10.1016/j.carbon.2003.12.074 10.1016/j.carbon.2003.12.074 Search in Google Scholar

Afanasov IM, Shornikova ON, Kirilenko DA, Vlasov II, Zhang L, Verbeeck J, et al. Graphite structural transformations during intercalation by HNO3 and exfoliation. Carbon. 2010;48:1862–5. https://doi.org/10.1016/S1872-5805(11)60085-1 AfanasovIM ShornikovaON KirilenkoDA VlasovII ZhangL VerbeeckJ Graphite structural transformations during intercalation by HNO3 and exfoliation Carbon 2010 48 1862 5 https://doi.org/10.1016/S1872-5805(11)60085-1 10.1016/j.carbon.2010.01.055 Search in Google Scholar

Dutta A. Fourier transform infrared spectroscopy. In: Spectroscopy Methods Nanomater Character. Elsevier;2017. pp. 73–93. DuttaA Fourier transform infrared spectroscopy In: Spectroscopy Methods Nanomater Character Elsevier 2017 73 93 10.1016/B978-0-323-46140-5.00004-2 Search in Google Scholar

Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–65. https://doi.org/10.1016/j.carbon.2007.02.034 StankovichS DikinDA PinerRD KohlhaasKA KleinhammesA JiaY Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide Carbon 2007 45 1558 65 https://doi.org/10.1016/j.carbon.2007.02.034 10.1016/j.carbon.2007.02.034 Search in Google Scholar

Sinha S, Warner JH. Recent progress in using graphene as an ultrathin transparent support for transmission electron microscopy. Small Struct. 2021;2:2000049. https://doi.org/10.1002/sstr.202000049 SinhaS WarnerJH Recent progress in using graphene as an ultrathin transparent support for transmission electron microscopy Small Struct 2021 2 2000049. https://doi.org/10.1002/sstr.202000049 10.1002/sstr.202000049 Search in Google Scholar

Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61:14095–07. https://doi.org/10.1103/PhysRevB.61.14095 FerrariAC RobertsonJ Interpretation of Raman spectra of disordered and amorphous carbon Phys Rev B 2000 61 14095 07 https://doi.org/10.1103/PhysRevB.61.14095 10.1103/PhysRevB.61.14095 Search in Google Scholar

Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotechnol. 2013;8:235–246. https://doi.org/10.1038/nnano.2013.46 FerrariAC BaskoDM Raman spectroscopy as a versatile tool for studying the properties of graphene Nat Nanotechnol 2013 8 235 246 https://doi.org/10.1038/nnano.2013.46 10.1038/nnano.2013.4623552117 Search in Google Scholar

Yang G, Li L, Lee WB, Ng MC. Structure of graphene and its disorders: A review. Sci Technol Adv Mater. 2018;19:613–48. https://doi.org/10.1080/14686996.2018.1494493 YangG LiL LeeWB NgMC Structure of graphene and its disorders: A review Sci Technol Adv Mater 2018 19 613 48 https://doi.org/10.1080/14686996.2018.1494493 10.1080/14686996.2018.1494493611670830181789 Search in Google Scholar

Wang G, Yang J, Park J, Gou X, Wang B, Liu H, et al. Facile synthesis and characterization of graphene nanosheets. J Phys Chem C. 2008;112:8192–95. https://doi.org/10.1021/jp710931h WangG YangJ ParkJ GouX WangB LiuH Facile synthesis and characterization of graphene nanosheets J Phys Chem C 2008 112 8192 95 https://doi.org/10.1021/jp710931h 10.1021/jp710931h Search in Google Scholar

Tian WM, Li SM, Wang B, Chen X, Liu JH, Yu M. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater. 2016;23:723–9. https://doi.org/10.1007/s12613-016-1286-0 TianWM LiSM WangB ChenX LiuJH YuM Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering Int J Miner Metall Mater 2016 23 723 9 https://doi.org/10.1007/s12613-016-1286-0 10.1007/s12613-016-1286-0 Search in Google Scholar

Manoratne CH, Rosa SR, Kottegoda IR. XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite. Mater Sci Res India. 2017;14:19–0. https://doi.org/10.13005/msri/140104 ManoratneCH RosaSR KottegodaIR XRD-HTA, UV visible, FTIR and SEM interpretation of reduced graphene oxide synthesized from high purity vein graphite Mater Sci Res India 2017 14 19 0 https://doi.org/10.13005/msri/140104 10.13005/msri/140104 Search in Google Scholar

Thema FT, Moloto MJ, Dikio ED, Nyangiwe NN, Kotsedi L, Maaza M, et al. Syntehies and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J Chem. 2013;1:1–6. https://doi.org/10.1155/2013/150536 ThemaFT MolotoMJ DikioED NyangiweNN KotsediL MaazaM Syntehies and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide J Chem 2013 1 1 6 https://doi.org/10.1155/2013/150536 10.1155/2013/150536 Search in Google Scholar

Jeyasimman D, Sivaprasad K, Sivasankaran S, Narayanasamy R. Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes. Powder Technol. 2014;258:189–7. https://doi.org/10.1016/j.powtec.2014.03.039 JeyasimmanD SivaprasadK SivasankaranS NarayanasamyR Fabrication and consolidation behavior of Al 6061 nanocomposite powders reinforced by multi-walled carbon nanotubes Powder Technol 2014 258 189 7 https://doi.org/10.1016/j.powtec.2014.03.039 10.1016/j.powtec.2014.03.039 Search in Google Scholar

Kuzumaki T, Miyazawa K, Ichinose H, Ito K. Processing of carbon nanotube reinforced aluminum composite. J Mater Res. 1998;13:2445–49. https://doi.org/10.1557/JMR.1998.0340 KuzumakiT MiyazawaK IchinoseH ItoK Processing of carbon nanotube reinforced aluminum composite J Mater Res 1998 13 2445 49 https://doi.org/10.1557/JMR.1998.0340 10.1557/JMR.1998.0340 Search in Google Scholar

Heping L, Fenger S, Yibo G, Shaolei C, Xingbin J. Preparation of graphene coated aluminum composite powders by high-energy ball milling. IOP Conf Ser Mater Sci Eng. 2019;544:012043. https://doi.org/10.1088/1757-899X/544/1/012043 HepingL FengerS YiboG ShaoleiC XingbinJ Preparation of graphene coated aluminum composite powders by high-energy ball milling IOP Conf Ser Mater Sci Eng 2019 544 012043. https://doi.org/10.1088/1757-899X/544/1/012043 10.1088/1757-899X/544/1/012043 Search in Google Scholar

Kumar SN, Keshavamurthy R, Haseebuddin MR, Koppad PG. Mechanical properties of aluminium-graphene composite synthesized by powder metallurgy and hot extrusion. Trans Indian Inst Met. 2017;70:605–13. https://doi.org/10.1007/s12666-017-1070-5 KumarSN KeshavamurthyR HaseebuddinMR KoppadPG Mechanical properties of aluminium-graphene composite synthesized by powder metallurgy and hot extrusion Trans Indian Inst Met 2017 70 605 13 https://doi.org/10.1007/s12666-017-1070-5 10.1007/s12666-017-1070-5 Search in Google Scholar

Wang J, Guo LN, Lin WM, Chen J, Liu CL, Zhang S, et al. Effect of the graphene content on the microstructures and properties of graphene/aluminum composites. New Carbon Mater. 2019;34:275–85. https://doi.org/10.1016/s1872-5805(19)60016-8 WangJ GuoLN LinWM ChenJ LiuCL ZhangS Effect of the graphene content on the microstructures and properties of graphene/aluminum composites New Carbon Mater 2019 34 275 85 https://doi.org/10.1016/s1872-5805(19)60016-8 10.1016/S1872-5805(19)60016-8 Search in Google Scholar

Kwon H, Park DH, Silvain JF, Kawasaki A. Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos Sci Technol. 2010;70:546–50. https://doi.org/10.1016/j.compscitech.2009.11.025 KwonH ParkDH SilvainJF KawasakiA Investigation of carbon nanotube reinforced aluminum matrix composite materials Compos Sci Technol 2010 70 546 50 https://doi.org/10.1016/j.compscitech.2009.11.025 10.1016/j.compscitech.2009.11.025 Search in Google Scholar

Zhou W, Yamaguchi T, Kikuchi K, Nomura N, Kawasaki A. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites. Acta Mater. 2017;125:369–76. https://doi.org/10.1016/j.actamat.2016.12.022 ZhouW YamaguchiT KikuchiK NomuraN KawasakiA Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites Acta Mater 2017 125 369 76 https://doi.org/10.1016/j.actamat.2016.12.022 10.1016/j.actamat.2016.12.022 Search in Google Scholar

Etter T, Schulz P, Weber M, Metz J, Wimmler M, Löffler JF, et al. Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater Sci Eng A. 2007;448:1–6. https://doi.org/10.1016/j.msea.2006.11.088 EtterT SchulzP WeberM MetzJ WimmlerM LöfflerJF Aluminium carbide formation in interpenetrating graphite/aluminium composites Mater Sci Eng A 2007 448 1 6 https://doi.org/10.1016/j.msea.2006.11.088 10.1016/j.msea.2006.11.088 Search in Google Scholar

Kurita H, Kwon H, Estili M, Kawasaki A. Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans. 2011;52:1960–65. https://doi.org/10.2320/matertrans.M2011146 KuritaH KwonH EstiliM KawasakiA Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion Mater Trans 2011 52 1960 65 https://doi.org/10.2320/matertrans.M2011146 10.2320/matertrans.M2011146 Search in Google Scholar

Chen B, Shen J, Ye X, Imai H, Umeda J, Takahashi M, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon. 2017;114:198–8. https://doi.org/10.1016/j.carbon.2016.12.013 ChenB ShenJ YeX ImaiH UmedaJ TakahashiM Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites Carbon 2017 114 198 8 https://doi.org/10.1016/j.carbon.2016.12.013 10.1016/j.carbon.2016.12.013 Search in Google Scholar

Zhang Z, Chen DL. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength. Scr Mater. 2006;54:1321–6. https://doi.org/10.1016/j.scriptamat.2005.12.017 ZhangZ ChenDL Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength Scr Mater 2006 54 1321 6 https://doi.org/10.1016/j.scriptamat.2005.12.017 10.1016/j.scriptamat.2005.12.017 Search in Google Scholar

Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 2014;62:141–5. https://doi.org/10.1016/j.actamat.2013.09.042 MaK WenH HuT ToppingTD IsheimD SeidmanDN Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy Acta Mater 2014 62 141 5 https://doi.org/10.1016/j.actamat.2013.09.042 10.1016/j.actamat.2013.09.042 Search in Google Scholar

Ovid’ko IA, Sheinerman AG. Nanoparticles as dislocation sources in nanocomposites. J Phys Condens Matter. 2006;18:L225–2. https://doi.org/10.1088/0953-8984/18/19/L01 Ovid’koIA SheinermanAG Nanoparticles as dislocation sources in nanocomposites J Phys Condens Matter 2006 18 L225 2 https://doi.org/10.1088/0953-8984/18/19/L01 10.1088/0953-8984/18/19/L01 Search in Google Scholar

Vo NQ, Sorensen J, Klier EM, Zadeh AS, Bayansan D, Seidman DN, et al. Development of a precipitation-strengthened matrix for non-quenchable aluminum metal matrix composites. JOM. 2016;68:1915–24. https://doi.org/10.1007/s11837-016-1896-z VoNQ SorensenJ KlierEM ZadehAS BayansanD SeidmanDN Development of a precipitation-strengthened matrix for non-quenchable aluminum metal matrix composites JOM 2016 68 1915 24 https://doi.org/10.1007/s11837-016-1896-z 10.1007/s11837-016-1896-z Search in Google Scholar

Zhang J, Chen Z, Zhao J, Jiang Z. Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling. Mech Adv Mater Mod Process. 2018;4:1–9. https://doi.org/10.1186/s40759-018-0037-5 ZhangJ ChenZ ZhaoJ JiangZ Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling Mech Adv Mater Mod Process 2018 4 1 9 https://doi.org/10.1186/s40759-018-0037-5 10.1186/s40759-018-0037-5 Search in Google Scholar

Sharifi EM, Enayati MH, Karimzadeh F. Fabrication and characterization of Al-Al4C3 nanocomposite by mechanical alloying. Int J Mod Phys Conf Ser. 2012;05:480–7. https://doi.org/10.1142/S2010194512002371 SharifiEM EnayatiMH KarimzadehF Fabrication and characterization of Al-Al4C3 nanocomposite by mechanical alloying Int J Mod Phys Conf Ser 2012 05 480 7 https://doi.org/10.1142/S2010194512002371 10.1142/S2010194512002371 Search in Google Scholar

Azarniya A, Safavi MS, Sovizi S, Azarniya A, Chen B, Hosseini HM, et al. Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites. Metals (Basel). 2017;7:384. https://doi.org/10.3390/met7100384 AzarniyaA SafaviMS SoviziS AzarniyaA ChenB HosseiniHM Metallurgical challenges in carbon nanotube-reinforced metal matrix nanocomposites Metals (Basel) 2017 7 384 https://doi.org/10.3390/met7100384 10.3390/met7100384 Search in Google Scholar

Khalili D. Graphene oxide: A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water. New J Chem. 2016;40:2547–53. https://doi.org/10.1039/C5NJ02314A KhaliliD Graphene oxide: A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water New J Chem 2016 40 2547 53 https://doi.org/10.1039/C5NJ02314A 10.1039/C5NJ02314A Search in Google Scholar

Anselmi-Tamburini U. Spark plasma sintering. In: Encyclopedia of Materials: Technical Ceramics and Glasses. Elsevier; 2021. pp. 294–310. https://doi.org/10.1016/B978-0-12-803581-8.11730-8 Anselmi-TamburiniU Spark plasma sintering In: Encyclopedia of Materials: Technical Ceramics and Glasses Elsevier 2021 294 310 https://doi.org/10.1016/B978-0-12-803581-8.11730-8 10.1016/B978-0-12-803581-8.11730-8 Search in Google Scholar

Omori M. Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A. 2000;287:183–8. https://doi.org/10.1016/S0921-5093(00)00773-5 OmoriM Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS) Mater Sci Eng A 2000 287 183 8 https://doi.org/10.1016/S0921-5093(00)00773-5 10.1016/S0921-5093(00)00773-5 Search in Google Scholar

Kwon H, Estili M, Takagi K, Miyazaki T, Kawasaki A. Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon. 2009;47:570–7. https://doi.org/10.1016/j.carbon.2008.10.041 KwonH EstiliM TakagiK MiyazakiT KawasakiA Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites Carbon 2009 47 570 7 https://doi.org/10.1016/j.carbon.2008.10.041 10.1016/j.carbon.2008.10.041 Search in Google Scholar

Awotunde MA, Adegbenjo AO, Obadele BA, Okoro M, Shongwe BM, Olubambi PA. Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review. J Mater Res Technol. 2019;8:2432–49. https://doi.org/10.1016/j.jmrt.2019.01.026 AwotundeMA AdegbenjoAO ObadeleBA OkoroM ShongweBM OlubambiPA Influence of sintering methods on the mechanical properties of aluminium nanocomposites reinforced with carbonaceous compounds: A review J Mater Res Technol 2019 8 2432 49 https://doi.org/10.1016/j.jmrt.2019.01.026 10.1016/j.jmrt.2019.01.026 Search in Google Scholar

Gao X, Yue H, Guo E, Zhang S, Wang B, Guan E, et al. Preparation and tribological properties of homogeneously dispersed graphene-reinforced aluminium matrix composites. Mater Sci Technol. 2018;34:1316–22. https://doi.org/10.1080/02670836.2018.1446869 GaoX YueH GuoE ZhangS WangB GuanE Preparation and tribological properties of homogeneously dispersed graphene-reinforced aluminium matrix composites Mater Sci Technol 2018 34 1316 22 https://doi.org/10.1080/02670836.2018.1446869 10.1080/02670836.2018.1446869 Search in Google Scholar

Lee JH, Kim BN, Jang BK. Non-uniform sintering behavior during spark plasma sintering of Y2O3. Ceram Int. 2020;46:4030–4. https://doi.org/10.1016/j.ceramint.2019.10.070 LeeJH KimBN JangBK Non-uniform sintering behavior during spark plasma sintering of Y2O3 Ceram Int 2020 46 4030 4 https://doi.org/10.1016/j.ceramint.2019.10.070 10.1016/j.ceramint.2019.10.070 Search in Google Scholar

Rohatgi PK, Tabandeh-Khorshid M, Omrani E, Lovell MR, Menezes PL. Tribology of metal matrix composites. In: Tribology Science Engineering. New York: Springer;2013. pp. 233–268. https://doi.org/10.1007/978-1-4614-1945-7_8 RohatgiPK Tabandeh-KhorshidM OmraniE LovellMR MenezesPL Tribology of metal matrix composites In: Tribology Science Engineering New York Springer 2013 233 268 https://doi.org/10.1007/978-1-4614-1945-7_8 10.1007/978-1-4614-1945-7_8 Search in Google Scholar

Smirnov A, Peretyagin P, Pinargote NWS, Gershman I, Bartolomé JF. Wear behavior of graphene-reinforced alumina-silicon carbide whisker nanocomposite. Nanomaterials. 2019;9:151. https://doi.org/10.3390/nano9020151 SmirnovA PeretyaginP PinargoteNWS GershmanI BartoloméJF Wear behavior of graphene-reinforced alumina-silicon carbide whisker nanocomposite Nanomaterials 2019 9 151 https://doi.org/10.3390/nano9020151 10.3390/nano9020151640953630691050 Search in Google Scholar

Chih A, Ansón-Casaos A, Puértolas JA. Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol Int. 2017;116:295–2. https://doi.org/10.1016/j.triboint.2017.07.027 ChihA Ansón-CasaosA PuértolasJA Frictional and mechanical behaviour of graphene/UHMWPE composite coatings Tribol Int 2017 116 295 2 https://doi.org/10.1016/j.triboint.2017.07.027 10.1016/j.triboint.2017.07.027 Search in Google Scholar

Kumar HGP, Xavior MA. Tribological aspects of graphene-aluminum nanocomposites. In: Kyzas GZ, Mitropoulos AC, editors. Graphene Materials - Structure Properties and Modifications. IntechOpen; 2017. https://doi.org/10.5772/67475 KumarHGP XaviorMA Tribological aspects of graphene-aluminum nanocomposites In: KyzasGZ MitropoulosAC editors. Graphene Materials - Structure Properties and Modifications IntechOpen 2017 https://doi.org/10.5772/67475 10.5772/67475 Search in Google Scholar

Zhang J, Chen Z, Wu H, Zhao J, Jiang Z. Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear. Surf Coatings Technol. 2019;358:907–12. https://doi.org/10.1016/j.surfcoat.2018.11.065 ZhangJ ChenZ WuH ZhaoJ JiangZ Effect of graphene on the tribolayer of aluminum matrix composite during dry sliding wear Surf Coatings Technol 2019 358 907 12 https://doi.org/10.1016/j.surfcoat.2018.11.065 10.1016/j.surfcoat.2018.11.065 Search in Google Scholar

Nayak B, Sahu RK, Karthikeyan P. Study of tensile and compressive behaviour of the in-house synthesized al-alloy nano composite. IOP Conf Ser Mater Sci Eng. 2018;402:012070. https://doi.org/10.1088/1757-899X/402/1/012070 NayakB SahuRK KarthikeyanP Study of tensile and compressive behaviour of the in-house synthesized al-alloy nano composite IOP Conf Ser Mater Sci Eng 2018 402 012070. https://doi.org/10.1088/1757-899X/402/1/012070 10.1088/1757-899X/402/1/012070 Search in Google Scholar

Raj RR, Yoganandh J, Saravanan MS, Kumar SS. Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites. Carbon Lett. 2021;31:125–36. https://doi.org/10.1007/s42823-020-00157-7 RajRR YoganandhJ SaravananMS KumarSS Effect of graphene addition on the mechanical characteristics of AA7075 aluminium nanocomposites Carbon Lett 2021 31 125 36 https://doi.org/10.1007/s42823-020-00157-7 10.1007/s42823-020-00157-7 Search in Google Scholar

Li JL, Xiong YC, Wang XD, Yan SJ, Yang C, He WW, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng. 2015;626:400–405. https://doi.org/10.1016/j.msea.2014.12.102 LiJL XiongYC WangXD YanSJ YangC HeWW Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling Mater Sci Eng 2015 626 400 405 https://doi.org/10.1016/j.msea.2014.12.102 10.1016/j.msea.2014.12.102 Search in Google Scholar

eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties