Otwarty dostęp

Effect of graphite nanoplatelets on spark plasma sintered and conventionally sintered aluminum-based nanocomposites developed by powder metallurgy


Zacytuj

Fig. 1

Synthesis of GnPs from NFG. GIC, graphite intercalation compound; GnP, graphite nanoplatelet; NFG, natural flake graphite.
Synthesis of GnPs from NFG. GIC, graphite intercalation compound; GnP, graphite nanoplatelet; NFG, natural flake graphite.

Fig. 2

(A) XRD and (B) (002) peak of NFG, GIC, thermally exfoliated graphite, and GnP. a.u., arbitrary unit; GIC, graphite intercalation compound; GnP, graphite nanoplatelet; NFG, natural flake graphite; Th. Ex. Gr., thermally exfoliated graphite; XRD, X-ray diffraction.
(A) XRD and (B) (002) peak of NFG, GIC, thermally exfoliated graphite, and GnP. a.u., arbitrary unit; GIC, graphite intercalation compound; GnP, graphite nanoplatelet; NFG, natural flake graphite; Th. Ex. Gr., thermally exfoliated graphite; XRD, X-ray diffraction.

Fig. 3

SEM images of (A) NFG (B) GIC, (C) thermally exfoliated graphite, (D) GnPs, and (E) pure Al. GIC, graphite intercalation compound; GnPs, graphite nanoplatelets; NFG, natural flake graphite; SEM, scanning electron microscopy.
SEM images of (A) NFG (B) GIC, (C) thermally exfoliated graphite, (D) GnPs, and (E) pure Al. GIC, graphite intercalation compound; GnPs, graphite nanoplatelets; NFG, natural flake graphite; SEM, scanning electron microscopy.

Fig. 4

HRTEM images of GnP powder. GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.
HRTEM images of GnP powder. GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.

Fig. 5

Raman spectra of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet.
Raman spectra of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet.

Fig. 6

(A–D) SEM micrographs of Al-1 wt.% to Al-5 wt.% GnP powder mixtures and elemental mapping of (E) 1 wt.% and (F) 3 wt.% GnPs added to Al powder. GnP, graphite nanoplatelet; SEM, scanning electron microscopy.
(A–D) SEM micrographs of Al-1 wt.% to Al-5 wt.% GnP powder mixtures and elemental mapping of (E) 1 wt.% and (F) 3 wt.% GnPs added to Al powder. GnP, graphite nanoplatelet; SEM, scanning electron microscopy.

Fig. 7

(A, B) HRTEM micrographs, (C) SAED pattern, and (D–F) elemental maps of Al-2 wt.% GnP powder mixture. GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.
(A, B) HRTEM micrographs, (C) SAED pattern, and (D–F) elemental maps of Al-2 wt.% GnP powder mixture. GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.

Fig. 8

(A) XRD plots of pure Al and various Al–GnP powder mixtures; (B) (002) peaks of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet; XRD, X-ray diffraction.
(A) XRD plots of pure Al and various Al–GnP powder mixtures; (B) (002) peaks of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet; XRD, X-ray diffraction.

Fig. 9

(A) XRD plots of various Al–GnP conventionally sintered nanocomposites (B) (002) peaks of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet; XRD, x-ray diffraction.
(A) XRD plots of various Al–GnP conventionally sintered nanocomposites (B) (002) peaks of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet; XRD, x-ray diffraction.

Fig. 10

(A) XRD plots of various Al–GnP SPSed nanocomposites; (B) (002) peaks of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet; SPS, spark plasma sintering; XRD, x-ray diffraction.
(A) XRD plots of various Al–GnP SPSed nanocomposites; (B) (002) peaks of GnPs. a.u., arbitrary unit; GnP, graphite nanoplatelet; SPS, spark plasma sintering; XRD, x-ray diffraction.

Fig. 11

(A–E) SEM micrographs of conventionally sintered pure Al and Al-1 wt.%, 2 wt.%, 3 wt.%, and 5 wt.% GnP nanocomposites; (F–H) elemental maps of Al-1 wt.%, 2 wt.%, and 3 wt.% conventionally sintered GnP nanocomposites. GnP, graphite nanoplatelet; SEM, scanning electron microscopy
(A–E) SEM micrographs of conventionally sintered pure Al and Al-1 wt.%, 2 wt.%, 3 wt.%, and 5 wt.% GnP nanocomposites; (F–H) elemental maps of Al-1 wt.%, 2 wt.%, and 3 wt.% conventionally sintered GnP nanocomposites. GnP, graphite nanoplatelet; SEM, scanning electron microscopy

Fig. 12

(A–D) SEM micrographs of SPSed pure Al and Al-1 wt.%, 3 wt.%, and 5 wt.% GnP nanocomposites, and (E–G) corresponding elemental maps of the nanocomposites. GnP, graphite nanoplatelet; SEM, scanning electron microscopy; SPS, spark plasma sintering.
(A–D) SEM micrographs of SPSed pure Al and Al-1 wt.%, 3 wt.%, and 5 wt.% GnP nanocomposites, and (E–G) corresponding elemental maps of the nanocomposites. GnP, graphite nanoplatelet; SEM, scanning electron microscopy; SPS, spark plasma sintering.

Fig. 13

(A–C) HRTEM micrographs and (D) SAED pattern of conventionally sintered Al-3 wt.% GnP nanocomposite. (E) Elemental mapping of HRTEM image in panel (C). GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.
(A–C) HRTEM micrographs and (D) SAED pattern of conventionally sintered Al-3 wt.% GnP nanocomposite. (E) Elemental mapping of HRTEM image in panel (C). GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.

Fig. 14

HRTEM and EDX analysis of Al4C3 nanoparticles in 3 wt.% GnP-added conventionally sintered Al nanocomposite. EDX, energy-dispersive X-ray spectroscopy; GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.
HRTEM and EDX analysis of Al4C3 nanoparticles in 3 wt.% GnP-added conventionally sintered Al nanocomposite. EDX, energy-dispersive X-ray spectroscopy; GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy.

Fig. 15

HRTEM micrographs of SPSed Al-3 wt.% GnP nanocomposite. GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy; SPS, spark plasma sintering.
HRTEM micrographs of SPSed Al-3 wt.% GnP nanocomposite. GnP, graphite nanoplatelet; HRTEM, high-resolution transmission electron microscopy; SPS, spark plasma sintering.

Fig. 16

HRTEM of SPSed Al-3 wt.% GnP nanocomposite with EDX analysis of Al4C3 particles. EDX, energy-dispersive X-ray spectroscopy; GnPs, graphite nanoplatelets; HRTEM, high-resolution transmission electron microscopy; SPS, spark plasma sintering.
HRTEM of SPSed Al-3 wt.% GnP nanocomposite with EDX analysis of Al4C3 particles. EDX, energy-dispersive X-ray spectroscopy; GnPs, graphite nanoplatelets; HRTEM, high-resolution transmission electron microscopy; SPS, spark plasma sintering.

Fig. 17

Optical micrographs of (A–D) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.
Optical micrographs of (A–D) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.

Fig. 18

Experimental and relative densities of (A) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.
Experimental and relative densities of (A) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.

Fig. 19

Variation of hardness in (A) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.
Variation of hardness in (A) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.

Fig. 20

Variation in (A) wear depth and (B) wear rate of conventionally sintered samples.
Variation in (A) wear depth and (B) wear rate of conventionally sintered samples.

Fig. 21

Variation in (A) wear depth and (B) wear rate of SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.
Variation in (A) wear depth and (B) wear rate of SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.

Fig. 22

SEM micrographs of the wear tracks of conventionally sintered and SPSed samples. GnP, graphite nanoplatelet; SEM, scanning electron microscopy; SPS, spark plasma sintering.
SEM micrographs of the wear tracks of conventionally sintered and SPSed samples. GnP, graphite nanoplatelet; SEM, scanning electron microscopy; SPS, spark plasma sintering.

Fig. 23

Compressive σ-ɛ curves of pure Al, Al-1 wt.%, 3 wt.%, and 5 wt.% GnP reinforced (A–D) conventionally sintered and (E–H) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.
Compressive σ-ɛ curves of pure Al, Al-1 wt.%, 3 wt.%, and 5 wt.% GnP reinforced (A–D) conventionally sintered and (E–H) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.

Fig. 24

Compressive strength, strain, and elastic modulus of various (A) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.
Compressive strength, strain, and elastic modulus of various (A) conventionally sintered and (B) SPSed samples. GnP, graphite nanoplatelet; SPS, spark plasma sintering.
eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties