[
1. Moghaddam, R. R., Nategh, S., Islam, J., & Boglietti, A. (2020). Different traction motor topologies used in e-mobility: Part II: Magnet-based solutions. In 2020 International Conference on Electrical Machines (ICEM), (pp. 138–143). 23 August 2020, Gothenburg.10.1109/ICEM49940.2020.9270938
]Search in Google Scholar
[
2. Hamidizadeh, S., Alatawneh, N., Chromik, R. R., & Lowther, D. A. (2016). Comparison of Different Demagnetization Models of Permanent Magnet in Machines for Electric Vehicle Application. IEEE Transactions on Magnetics, 52 (5), 1–4.10.1109/TMAG.2015.2513067
]Search in Google Scholar
[
3. Jeong, G., Kim, H., & Lee, J. (2020). A Study on the Design of IPMSM for Reliability of Demagnetization Characteristics-Based Rotor. IEEE Transactions on Applied Superconductivity, 30 (4), 1–5.10.1109/TASC.2020.2982890
]Search in Google Scholar
[
4. de Pancorbo, S. M., Ugalde, G., Poza, J., & Egea, A. (2015). Comparative study between induction motor and Synchronous Reluctance Motor for electrical railway traction applications. In 2015 5th International Electric Drives Production Conference (EDPC), (1560040). 15–16 September 2015, Nuremberg, Germany.10.1109/EDPC.2015.7323219
]Search in Google Scholar
[
5. Jurca, F. N., Mircea, R., Martis, C., Martis, R., & Florin, P. P. (2014). Synchronous reluctance motors for small electric traction vehicle. In 2014 International Conference and Exposition on Electrical and Power Engineering (EPE), (pp. 1–5). 4 December 2014, Iasi.10.1109/ICEPE.2014.6969920
]Search in Google Scholar
[
6. Jurca, F. N., Ruba, M., & Marţiş, C. (2016). Design and control of synchronous reluctances motors for electric traction vehicle. In 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). 22–24 June 2016, Capri, Italy.10.1109/SPEEDAM.2016.7525824
]Search in Google Scholar
[
7. Riley, C. P., Bedford, A. M., Topping, P. J., Reeve, J. M., Wale, J. D., Venskus, A. … & Ilea, D. (2014). Simulation based design of reluctance motors for traction applications in hybrid and electric vehicles. In 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014). 4 August 2014, Manchester.10.1049/cp.2014.0316
]Search in Google Scholar
[
8. ABB. (2019). Low Voltage IE5 Synchronous Reluctance Motors. Available at http://new.abb.com
]Search in Google Scholar
[
9. SIEMENS AG. (2019). SIMOTICS Reluctance Motor with SINAMICS Frequency Converters. Available at http://www.industry.siemens.com
]Search in Google Scholar
[
10. Vagati, A., Pastorelli, M., Franceschini, G., & Petrache, S.C. (1998). Design of Low-Torque-Ripple Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 34 (4), 758–765.10.1109/28.703969
]Search in Google Scholar
[
11. Lipo, T. A., & Matsuo, T. (1994). Rotor Design Optimization of Synchronous Reluctance Machine. IEEE Transaction on Energy Conversion, 9 (2), 359–365.
]Search in Google Scholar
[
12. Orlova, S., Vezzini, A., & Pugachov, V. (2015). Analysis of parameters for optimal design of synchronous reluctance motor. In 56th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). 14 October 2015, Riga, Latvia. doi:10.1109/RTUCON.2015.7343178
]Otwórz DOISearch in Google Scholar
[
13. Orlova, S., Pugachov, V., Rassõlkin, A., Kallaste, A., & Vaimann, T. (2019). Design of rotors for synchronous reluctance motor: Analytical treatment and optimization. In 21st European Conference on Power Electronics and Applications (EPE ‹19 ECCE Europe), (pp. 1–9). 3–5 September 2019, Genova, Italy.10.23919/EPE.2019.8914760
]Search in Google Scholar
[
14. Boldea, I. (1996). Reluctance Synchronous Machines and Drives. Oxford: Clarendon Press.
]Search in Google Scholar
[
15. Boldea, I., & Nasar, S. A. (2009). The Induction Machines Design Handbook (2nd ed.). USA: CRC Press.10.1201/9781420066692
]Search in Google Scholar
[
16. Pyrhonen, J., Jokinen T., & Hrabovcova V. (2008). Design of Rotating Electrical Machines. John Wiley & Sons.10.1002/9780470740095
]Search in Google Scholar
[
17. Kопылов, И.П. (1986). Электрических машины. М.: Энергоатомиздат.
]Search in Google Scholar
[
18. Kolehmainen, J. (2010). Synchronous Reluctance Motor with Form Blocked Rotor. IEEE Trans. Energy Convers., 25 (2), 450–456.10.1109/TEC.2009.2038579
]Search in Google Scholar
[
19. Gulbis, K., Kamoliņš, E., & Brakanskis, U. (2016). Synchronous reluctance machine with improved design of rotor mechanical strength connections. In 2016 IEEE 4th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE 2016), (pp. 97–101). 10–12 November 2016, Lithuania, Vilnius.10.1109/AIEEE.2016.7821820
]Search in Google Scholar
[
20. Gulbis, K., Kamoliņš, E., Brakanskis, U., & Zarembo, J. (2020). Parameter calculation method of synchronous reluctance motor including cross magnetic saturation. In 2020 IEEE 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). 5–7 November 2020, Riga, Latvia.10.1109/RTUCON51174.2020.9316606
]Search in Google Scholar
[
21. Rashad, E. M., Radwan, T. S., & Rahman, M. A. (2004). A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses. In 2004 IEEE Industry Applications Conference, 39th IAS Annual Meeting, (pp. 2411–2417). Seattle, WA, USA, doi: 10.1109/IAS.2004.1348813.
]Otwórz DOISearch in Google Scholar