Otwarty dostęp

Fabrication of nano-patterns of photoresist by ultraviolet lithography and oxygen plasma


Zacytuj

[1] Z. C. Fang, Y. Ding, Z. C. Zhang, F. Wang, Z. K. Wang, H. Wang, and T. R. Pan, “Digital microfluidic meter-on-chip”, Lab on a Chip vol. 20, no. 4, pp. 722-733, 2020.10.1039/C9LC00989BSearch in Google Scholar

[2] R. Oz, K. K. Sriram, and F. Westerlund, “A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level”, Nanoscale vol. 11, no. 4, pp. 2071-2078, 2019.Search in Google Scholar

[3] L. M. Fu, H. H. Hou, P. H. Chiu, and R. J. Yang, “Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review”, Electrophoresis vol. 39, no. 2, pp. 289-310, 2018.10.1002/elps.20170034028960423Search in Google Scholar

[4] R. Li, W. Gai, D. Zhu, C. Lok, C. Song, J. Dong, N. Han, Y. Zhang, and X. Zhao, “Evaluation of a novel micro/nanofluidic chip platform for the detection of influenza A and B virus in patients with influenza-like illness”, Amb Express vol. 9, pp. 77, 2019.10.1186/s13568-019-0791-8653871931139958Search in Google Scholar

[5] W. Q. Yue, Z. Tan, X. P. Li, F. F. Liu, and C. Wang, “Micro/nanofluidic technologies for efficient isolation and detection of circulating tumor cells”, Trac-Trends in Analytical Chemistry vol. 117, pp. 101-115, 2019.10.1016/j.trac.2019.06.009Search in Google Scholar

[6] L. H. Yeh, Z. Y. Huang, Y. C. Liu, M. J. Deng, T. H. Chou, H. C. O. Yang, T. Ahamad, S. M. Alshehri, and K. C. W. Wu, “A nanofluidic osmotic power generator demonstrated in polymer gel electrolytes with substantially enhanced performance”, Journal of Materials Chemistry A vol. 7, no. 47, pp. 26791-26796, 2019.Search in Google Scholar

[7] S. Kim, G. H. Kim, H. Woo, T. An, and G. Lim, “Fabrication of a Novel Nanofluidic Device Featuring ZnO Nanochannels”, Acs Omega vol. 5, no. 7, pp. 3144-3150, 2020.Search in Google Scholar

[8] S. Wang, Y. Liu, P. Ge, Q. Kan, N. Yu, J. Wang, J. Nan, S. Ye, J. Zhang, W. Xu, and B. Yang, “Colloidal lithography-based fabrication of highly-ordered nanofluidic channels with an ultra-high surface-to-volume ratio”, Lab on a Chip vol. 18, no. 6, pp. 979-988, 2018.10.1039/C7LC01326DSearch in Google Scholar

[9] J. Kim and H. Park, “Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery”, Energy vol. 160, pp. 192-199, 2018.10.1016/j.energy.2018.06.221Search in Google Scholar

[10] B. R. Cipriany, R. Zhao, P. J. Murphy, S. L. Levy, C. P. Tan, H. G. Craighead, and P. D. Soloway, “Single Molecule Epigenetic Analysis in a Nanofluidic Channel”, Analytical Chemistry vol. 82, no. 6, pp. 2480-2487, 2010.Search in Google Scholar

[11] X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis”, Nano Letters vol. 8, no. 5, pp. 1472-1476, 2008.Search in Google Scholar

[12] C. C. Wong, A. Agarwal, N. Balasubramanian, and D. L. Kwong, “Fabrication of self-sealed circular nano/microfluidic channels in glass substrates”, Nanotechnology vol. 18, no. 13, pp. 135304, 2007.Search in Google Scholar

[13] S. W. Nam, M. H. Lee, S. H. Lee, D. J. Lee, S. M. Rossnagel, and K. B. Kim, “Sub-10-nm Nanochannels by Self-Sealing and Self-Limiting Atomic Layer Deposition”, Nano Letters vol. 10, no. 9, pp. 3324-3329, 2010.Search in Google Scholar

[14] N. R. Tas, J. W. Berenschot, P. Mela, H. V. Jansen, M. Elwenspoek, and A. van den Berg, “2D-confined nanochannels fabricated by conventional micromachining”, Nano Letters vol. 2, no. 9, pp. 1031-1032, 2002.Search in Google Scholar

[15] K. D. Park, S. W. Lee, N. Takama, T. Fujii, and B. J. Kim, “Arbitrary-shaped nanochannels fabricated by polymeric deformation to achieve single DNA stretching”, Microelectronic Engineering vol. 86, no. 4-6, pp. 1385-1388, 2009.Search in Google Scholar

[16] D. Huh, K. L. Mills, X. Zhu, M. A. Burns, M. D. Thouless, and S. Takayama, “Tuneable elastomeric nanochannels for nanofluidic manipulation”, Nature Materials vol. 6, no. 6, pp. 424-428, 2007.10.1038/nmat190717486084Search in Google Scholar

[17] M. Kim, D. Ha, and T. Kim, “Cracking-assisted photolithography for mixed-scale patterning and nanofluidic applications”, Nature Communications vol. 6, pp. 6247, 2015.10.1038/ncomms724725692794Search in Google Scholar

[18] J. Wang and Z. Yin, “SU-8 nano-nozzle fabrication for electrohydrodynamic jet printing using UV photolithography”, Materials Science in Semiconductor Processing vol. 84, pp. 144-150, 2018.10.1016/j.mssp.2018.05.028Search in Google Scholar

[19] E. Cheng, H. Zou, Z. Yin, P. Jurcicek, and X. Zhang, “Fabrication of 2D polymer nanochannels by sidewall lithography and hot embossing”, Journal of Micromechanics and Microengineering vol. 23, no. 7, pp. 075022, 2013.Search in Google Scholar

[20] J. Gong, K. Ansari, H. Jin, and J. A. van Kan, “High-throughput fabrication of polymethylmethacrylate nano-hole arrays for structural coloration using proton beam writing made diamond stamp”, Microelectronic Engineering vol. 222, pp. 111213, 2020.Search in Google Scholar

[21] J. A. van Kan, P. G. Shao, Y. H. Wang, and P. Malar, “Proton beam writing a platform technology for high quality three-dimensional metal mold fabrication for nanofluidic applications”, Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems vol. 17, no. 9, pp. 1519-1527, 2011.Search in Google Scholar

[22] Y. Chen, “Nanofabrication by electron beam lithography and its applications: A review”, Microelectronic Engineering vol. 135, pp. 57-72, 2015.10.1016/j.mee.2015.02.042Search in Google Scholar

[23] T. Okino, Y. Kuba, M. Shibata, and H. Ohyi, “130 kV High-Resolution Electron Beam Lithography System for Sub-10-nm Nanofabrication”, Japanese Journal of Applied Physics vol. 52, no. 6, pp. 06GB01, 2013.10.7567/JJAP.52.06GB01Search in Google Scholar

[24] R. P. Aloysius, S. Husale, A. Kumar, F. Ahmad, A. K. Gangwar, G. S. Papanai, and A. Gupta, “Superconducting properties of tungsten nanowires fabricated using focussed ion beam technique”, Nanotechnology vol. 30, no. 40, pp. 405001, 2019.Search in Google Scholar

[25] R. Ribeiro-Andrade, T. L. Vasconcelos, R. M. S. Kawabata, M. P. Pires, P. L. Souza, and W. N. Rodrigues, “Two-dimensional ordered growth of In As nanowires assisted by randomly deposited silver nanoparticles on a topographically modified surface by a focused ion beam”, Applied Surface Science vol. 493, pp. 271-278, 2019.10.1016/j.apsusc.2019.06.024Search in Google Scholar

[26] J. Sakamoto, H. Noma, N. Fujikawa, H. Kawata, M. Yasuda, and Y. Hirai, “Strength enhancement of nano patterns from edge lithography for nanoimprint mold”, Microelectronic Engineering vol. 98, pp. 189-193, 2012.10.1016/j.mee.2012.07.038Search in Google Scholar

[27] J. Hallstedt, P. E. Hellstrom, and H. H. Radamson, “Sidewall transfer lithography for reliable fabrication of nanowires and deca-nanometer MOSFETs”, Thin Solid Films vol. 517, no. 1, pp. 117-120, 2008.10.1016/j.tsf.2008.08.134Search in Google Scholar

[28] Z. Zhang, P. E. Hellstrom, J. Lu, M. Ostling, and S. L. Zhang, “A novel self-aligned process for platinum silicide nanowires”, Microelectronic Engineering vol. 83, no. 11-12, pp. 2107-2111, 2006.Search in Google Scholar

eISSN:
1339-309X
Język:
Angielski
Częstotliwość wydawania:
6 razy w roku
Dziedziny czasopisma:
Engineering, Introductions and Overviews, other