1. bookTom 29 (2021): Zeszyt 2 (June 2021)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
access type Otwarty dostęp

A Generalization of Archimedes’ Theorem on the Area of a Parabolic Segment

Data publikacji: 08 Jul 2021
Tom & Zeszyt: Tom 29 (2021) - Zeszyt 2 (June 2021)
Zakres stron: 199 - 209
Otrzymano: 24 Sep 2020
Przyjęty: 15 Nov 2020
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
1844-0835
Pierwsze wydanie
17 May 2013
Częstotliwość wydawania
1 raz w roku
Języki
Angielski
Abstract

Archimedes’ well known theorem on the area of a parabolic segment says that this area is 4/3 of the area of a certain inscribed triangle. In this paper we generalize this theorem to the n-dimensional euclidean space, n ≥ 3. It appears that the ratio of the volume of an n-dimensional solid bounded by an (n − 1)-dimensional hyper-paraboloid and an (n − 1)-dimensional hyperplane and the volume of a certain inscribed cone (we analogously repeat Archimedes’ procedure) depends only on the dimension of the euclidean space and it equals to 2n/(n +1).

Keywords

MSC 2010

[1] L. E. Blumenson, A derivation of n-Dimensional Spherical Coordinates, The American Mathematical Monthly, Vol. 67, No. 1 (1960), pp. 63-66. Search in Google Scholar

[2] T. Dance, G. Swain, Archimedes’ Quadrature of Parabola Revisited, Mathematics Magazine, Vol. 71, No. 2 (1998), pp. 123-130. Search in Google Scholar

[3] T. L. Heath, The Works of Archimedes, C. J. Clay and Sons, London, 1897. Search in Google Scholar

[4] W. Rudin, Principles of the Mathematical Analysis, third edition, McGraw-Hill, Inc., New York, 1976. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo