Otwarty dostęp

Lyophilized Kale (Brassica oleracea L.) Leaves as an Enhancing Component in Gluten-Free Bread


Zacytuj

Agarwal, A., Raj, N., & Chaturvedi, N. (2017). A comparative study on proximate and antioxidant activity of Brassica oleracea (Kale) and Spinacea oleracea (Spinach) leaves. International Journal of Advanced Research in Biological Sciences (IJARBS), 4(4), 22–29. https://doi.org/10.22192/ijarbs.2017.04.04.004Search in Google Scholar

Becerra-Moreno, A., Alanís-Garza, P. A., Mora-Nieves, J. L., Mora-Mora, J. P., & Jacobo-Velázquez, D. A. (2014). Kale: an excellent source of vitamin C, pro-vitamin A, lutein and glucosinolates. CyTA - Journal of Food, 12(3), 298–303. https://doi.org/10.1080/19476337.2013.850743Search in Google Scholar

Bhupathiraju, S. N., Wedick, N. M., Pan, A., Manson, J. E., Rexrode, K. M., Willett, W. C., Rimm, E. B., & Hu, F. B. (2013). Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. American Journal of Clinical Nutrition, 98(6), 1514–1523. https://doi.org/10.3945/ajcn.113.066381Search in Google Scholar

Carter, P., Gray, L. J., Troughton, J., Khunti, K., & Davies, M. J. (2010). Fruit and vegetable intake and incidence of type 2 diabetes mellitus: Systematic review and meta-analysis. BMJ (Clinical Research Ed.), 341, c4229. https://doi.org/10.1136/bmj.c4229Search in Google Scholar

Carvalho, J. C. S., Romoff, P., & Da Lannes, S. C. S. (2018). Improvement of nutritional and physicochemical proprieties of milk chocolates enriched with kale (Brassica olereacea var. acephala) and grape (Vitis vinífera). Food Science and Technology, 38(3), 551–560. https://doi.org/10.1590/fst.15018Search in Google Scholar

Di Noia, J. (2014). Defining powerhouse fruits and vegetables: a nutrient density approach. Preventing Chronic Disease, 11, 130390. https://doi.org/10.5888/pcd11.130390Search in Google Scholar

Drabińska, N., Ciska, E., Szmatowicz, B., & Krupa-Kozak, U. (2018). Broccoli by-products improve the nutraceutical potential of gluten-free mini sponge cakes. Food Chemistry, 267, 170–177. https://doi.org/10.1016/j.foodchem.2017.08.119Search in Google Scholar

Emebu, P. K., & Anyika, J. U. (2010). Vitamin and antinutrient composition of kale (Brassica oleracea) grown in Delta State, Nigeria. Pakistan Journal of Nutrition, 10(1), 76–79. https://doi.org/10.3923/pjn.2011.76.79Search in Google Scholar

Kahlon, T. S., Chapman, M. H., & Smith, G. E. (2007). In vitro binding of bile acids by spinach, kale, brussels sprouts, broccoli, mustard greens, green bell pepper, cabbage and collards. Food Chemistry, 100(4), 1531–1536. https://doi.org/10.1016/j.foodchem.2005.12.020Search in Google Scholar

Kasprzak, K., Oniszczuk, T., Wójtowicz, A., Waksmundzka-Hajnos, M., Olech, M., Nowak, R., Polak, R., & Oniszczuk, A. (2018). Phenolic acid content and antioxidant properties of extruded corn snacks enriched with kale. Journal of Analytical Methods in Chemistry, 2018, 7830546. https://doi.org/10.1155/2018/7830546Search in Google Scholar

Kim, S. Y., Yoon, S., Kwon, S. M., Park, K. S., & Lee-Kim, Y. C. (2008). Kale juice improves coronary artery disease risk factors in hypercholesterolemic men. Biomedical and Environmental Sciences, 21(2), 91–97. https://doi.org/10.1016/S0895-3988(08)60012-4Search in Google Scholar

Klopsch, R., Baldermann, S., Hanschen, F. S., Voss, A., Rohn, S., Schreiner, M., & Neugart, S. (2019). Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Food Chemistry, 295, 412–422. https://doi.org/10.1016/j.foodchem.2019.05.113Search in Google Scholar

Korus, A. (2020). Changes in the content of minerals, B-group vitamins and tocopherols in processed kale leaves. Journal of Food Composition and Analysis, 89, 103464. https://doi.org/10.1016/j.jfca.2020.103464Search in Google Scholar

Korus, A., Witczak, M., Korus, J., & Juszczak, L. (2023). Dough rheological properties and characteristics of wheat bread with the addition of lyophilized kale (Brassica oleracea L. var. sabellica) powder. Applied Sciences, 13(1), 29. https://doi.org/10.3390/app13010029Search in Google Scholar

Korus, J., Ziobro, R., Witczak, T., Kapusniak Jochym, K., & Juszczak, L. (2021). Effect of Ootenyl succinic anhydride (OSA) modified starches on the rheological properties of dough and characteristic of the gluten-free bread. Molecules, 26(8). https://doi.org/10.3390/molecules26082197Search in Google Scholar

Krupa-Kozak, U., Drabińska, N., Bączek, N., Šimková, K., Starowicz, M., & Jeliński, T. (2021). Application of broccoli leaf powder in gluten-free bread: An innovative approach to improve its bioactive potential and technological quality. Foods, 10(4). https://doi.org/10.3390/foods10040819Search in Google Scholar

Kural, B. V., Küçük, N., Yücesan, F. B., & Örem, A. (2011). Effects of kale (Brassica oleracea L. var. acephala DC) leaves extracts on the susceptibility of very low and low density lipoproteins to oxidation. Indian Journal of Biochemistry & Biophysics, 48(5), 361–364.Search in Google Scholar

Majzoobi, M., Poor, Z. V., Jamalian, J., & Farahnaky, A. (2016). Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder. International Journal of Food Science & Technology, 51(6), 1369–1377. https://doi.org/10.1111/ijfs.13104Search in Google Scholar

Ranawana, V., Campbell, F., Bestwick, C., Nicol, P., Milne, L., Duthie, G., & Raikos, V. (2016). Breads fortified with freeze-dried vegetables: Quality and nutritional attributes. Part II: Breads not containing oil as an ingredient. Foods, 5(3). https://doi.org/10.3390/foods5030062Search in Google Scholar

Ren, Y., Linter, B. R., Linforth, R., & Foster, T. J. (2020). A comprehensive investigation of gluten free bread dough rheology, proving and baking performance and bread qualities by response surface design and principal component analysis. Food & Function, 11(6), 5333–5345. https://doi.org/10.1039/d0fo00115eSearch in Google Scholar

Ribotta, P. D., & Le Bail, A. (2007). Thermo-physical assessment of bread during staling. LWT - Food Science and Technology, 40(5), 879–884. https://doi.org/10.1016/j.lwt.2006.03.023Search in Google Scholar

Royston, K. J., & Tollefsbol, T. O. (2015). The Epigenetic Impact of Cruciferous Vegetables on Cancer Prevention. Current Pharmacology Reports, 1(1), 46–51. https://doi.org/10.1007/s40495-014-0003-9Search in Google Scholar

Šamec, D., Urlić, B., & Salopek-Sondi, B. (2019). Kale (Brassica oleracea var. Acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition, 59(15), 2411–2422. https://doi.org/10.1080/10408398.2018.1454400Search in Google Scholar

U.S. Department of Health and Human Services and U.S. Department of Agriculture. (2015). 2015 – 2020 Dietary Guidelines for Americans. 8th Edition. December 2015. https://health.gov/our-work/food-nutrition/previous-dietary-guidelines/2015Search in Google Scholar

Wang, N., Xu, Y., Chao, H., Zhang, M., Zhou, Y., & Wang, M. (2020). Effects of celery powder on wheat dough properties and textural, antioxidant and starch digestibility properties of bread. Journal of Food Science and Technology, 57(5), 1710–1718. https://doi.org/10.1007/s13197-019-04204-8Search in Google Scholar

Witczak, M., Korus, J., Ziobro, R., & Juszczak, L. (2019). Waxy starch as dough component and anti-staling agent in gluten-free bread. LWT - Food Science and Technology, 99, 476–482. https://doi.org/10.1016/j.lwt.2018.10.009Search in Google Scholar

Witczak, T., Juszczak, L., Ziobro, R., & Korus, J. (2017). Rheology of gluten-free dough and physical characteristics of bread with potato protein. Journal of Food Process Engineering, 40(3), e12491. https://doi.org/10.1111/jfpe.12491Search in Google Scholar

World Health Organization. (2020). Healthy diet. https://www.who.int/news-room/fact-sheets/detail/healthy-dietSearch in Google Scholar

eISSN:
2344-150X
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Industrial Chemistry, other, Food Science and Technology