1. bookTom 23 (2023): Zeszyt 1 (January 2023)
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski
Open Access

Black Soldier Fly Full-Fat Meal in Atlantic Salmon Nutrition – Part B: Effects on Growth Performance, Feed Utilization, Selected Nutriphysiological Traits and Production Sustainability in Pre-Smolts

Data publikacji: 27 Jan 2023
Tom & Zeszyt: Tom 23 (2023) - Zeszyt 1 (January 2023)
Zakres stron: 239 - 251
Otrzymano: 06 Jun 2022
Przyjęty: 09 Sep 2022
Informacje o czasopiśmie
License
Format
Czasopismo
eISSN
2300-8733
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Języki
Angielski

Alfiko Y., Xie D., Astuti R.T., Wong J., Wang L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquac. Fish, 7: 166–178. Search in Google Scholar

Allan G.L., Rowland S.J., Parkinson S., Stone D.A.J., Jantrarotai W. (1999). Nutrient digestibility for juvenile silver perch Bidyanus bidyanus: Development of methods. Aquaculture, 170: 131–145. Search in Google Scholar

Askarian F., Zhou Z., Olsen R.E., Sperstad S., Ringø E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326: 1–8. Search in Google Scholar

Association of Official Agricultural Chemists (AOAC) (2005). Official Methods of Analysis. AOAC, Arlington, VA, USA. Search in Google Scholar

Austreng E. (1978). Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture, 13: 265–272. Search in Google Scholar

Bazoche P., Poret S. (2016). What do trout eat: Acceptance of insects in animal feed. J. Recherche Sci. Soc., 1–4. Search in Google Scholar

Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å., Lock E.J. (2019 a). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609–619.10.1016/j.aquaculture.2018.12.032 Search in Google Scholar

Belghit I., Waagbø R., Lock E.J., Liland N.S. (2019 b). Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac. Nutr., 25: 343–357.10.1111/anu.12860 Search in Google Scholar

Bogucka J., Dankowiakowska A., Elminowska-Wenda G., Sobolewska A., Szczerba A., Bednarczyk M. (2016). Effects of prebiotics and synbiotics delivered in ovo on broiler small intestine histomorphology during the first days after hatching. Folia Biol. (Kraków), 64: 131–143. Search in Google Scholar

Bruni L., Belghit I., Lock E.J., Secci G., Taiti C., Parisi G. (2020). Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J. Sci. Food Agric., 100: 1038–1047. Search in Google Scholar

Cardinaletti G., Randazzo B., Messina M., Zarantoniello M., Giorgini E., Zimbelli A., Bruni L., Parisi G., Olivotto I., Tulli F. (2019). Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 529: 735678. Search in Google Scholar

Choubert G., De la Noüe J., Luquet P. (1982). Digestibility in fish: Improved device for the automatic collection of feces. Aquaculture, 29: 185–189. Search in Google Scholar

Davidson J., Kenney P.B., Barrows F.T., Good C., Summerfelt S.T. (2018). Fillet quality and processing attributes of postsmolt Atlantic salmon, Salmo salar, fed a fishmeal-free diet and a fishmeal-based diet in recirculation aquaculture systems. J. World Aquac. Soc., 49: 183–196. Search in Google Scholar

De Santis C., Tocher D.R., Ruohonen K., El-Mowafi A., Martin S.A.M., Dehler C.E., Secombes C.J., Crampton V. (2016). Airclassified faba bean protein concentrate is efficiently utilized as a dietary protein source by post-smolt Atlantic salmon (Salmo salar). Aquaculture, 452: 169–177. Search in Google Scholar

Dietz C., Liebert F. (2018). Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (Oreochromis niloticus)? Aquac. Rep., 12: 43–48. Search in Google Scholar

Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492: 24–34. Search in Google Scholar

Egerton S., Wan A., Murphy K., Collins F., Ahern G., Sugrue I., Busca K., Egan F., Muller N., Whooley J., McGinnity P., Culloty S., Ross R.P., Stanton C. (2020). Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci. Rep., 10: 1–16. Search in Google Scholar

English G., Wanger G., Colombo S.M. (2021). A review of advancements in black soldier fly (Hermetia illucens) production for dietary inclusion in salmonid feeds. J. Sci. Food Agric., 5: 100164. Search in Google Scholar

Franco A., Scieuzo C., Salvia R., Petrone A.M., Tafi E., Moretta A., Schmitt E., Falabella P. (2021). Lipids from Hermetia illucens, an innovative and sustainable source. Sustainability, 13: 10198. Search in Google Scholar

Gong Y., Bandara T., Huntley M., Johnson Z.I., Dias J., Dahle D., Sørensen M., Kiron V. (2019). Microalgae Scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo salar L.). Aquaculture, 501: 455–464. Search in Google Scholar

Gopalakannan A., Arul V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture, 255: 179–187. Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Merida S., Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci., 20: 579–598. Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Mérida S., Kołodziejski P., Pruszyńska-Oszmałek E., Mazurkiewicz J. (2021). Mealworm meal use in sea trout (Salmo trutta m. trutta, L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters. Aquac. Nutr., 27: 1512–1528. Search in Google Scholar

Hossain M.S., Fawole F.J., Labh S.N., Small B.C., Overturf K., Kumar V. (2021). Insect meal inclusion as a novel feed ingredient in soybased diets improves performance of rainbow trout (Oncorhynchus mykiss). Aquaculture, 544: 737096. Search in Google Scholar

Hua K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture, 530: 735732. Search in Google Scholar

Husein Y., Bruni L., Secci G., Taiti C., Belghit I., Lock E.J., Parisi G. (2021). Does sous-vide cooking preserve the chemical and volatile composition of Atlantic salmon (Salmo salar L.) fed Hermetia illucens larvae meal? J. Insects Food Feed, 7: 69–77. Search in Google Scholar

Janssen R.H., Vincken J.P., Van Den Broek L.A.M., Fogliano V., Lakemond C.M.M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem., 65: 2275–2278. Search in Google Scholar

Józefiak A., Nogales-Mérida S., Mikołajczak Z., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). The utilization of fullfat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: the effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci., 19: 747–765. Search in Google Scholar

Krogdahl Å., Sundby A., Holm H. (2015). Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture, 449: 27–36. Search in Google Scholar

Laureati M., Proserpio C., Jucker C., Savoldelli S. (2016). New sustainable protein sources: Consumers’ willingness to adopt insects as feed and food. It. J. Food Sci., 28. Search in Google Scholar

Li Y., Bruni L., Jaramillo-Torres A., Gajardo K., Kortner T.M., Krogdahl A. (2020 a). Differential response of digesta and mucosa-associated intestinal microbiota to dietary black soldier fly (Hermetia illucens) larvae meal in seawater phase Atlantic salmon (Salmo salar). bioRxiv.10.21203/rs.3.rs-62266/v1 Search in Google Scholar

Li Y., Kortner T.M., Chikwati E.M., Belghit I., Lock E.J., Krogdahl Å. (2020 b). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520: 734967.10.1016/j.aquaculture.2020.734967 Search in Google Scholar

Lock E.R., Arsiwalla T., Waagbø R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr., 22: 1202–1213. Search in Google Scholar

Mancuso T., Baldi L., Gasco L. (2016). An empirical study on consumer acceptance of farmed fish fed on insect meals: the Italian case. Aquac. Int., 24: 1489–1507. Search in Google Scholar

Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10: 1031. Search in Google Scholar

Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Kołodziejski P., Pruszyńska-Oszmałek E., Józefiak D. (2022). The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal, 16: 100516. Search in Google Scholar

Mohan K., Rajan D.K., Muralisankar T., Ganesan A.R., Sathishkumar P., Revathi N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture, 553: 738095. Search in Google Scholar

Munshi J.S.D., Dutta H.M. (1998). Fish morphology: Horizon of new research. CRC Press LCC. Search in Google Scholar

National Research Council (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press, Washington, DC. Search in Google Scholar

Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563. Search in Google Scholar

Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103. Search in Google Scholar

Nordgarden U., Hemre G.I., Hansen T. (2002). Growth and body composition of Atlantic salmon (Salmo salar L.) parr and smolt fed diets varying in protein and lipid contents. Aquaculture, 207: 65–78. Search in Google Scholar

Palma L., Fernandez-Bayo J., Niemeier D., Pitesky M., Vander Gheynst J.S. (2019). Managing high fiber food waste for the cultivation of black soldier fly larvae. npj Sci. Food, 3: 15. Search in Google Scholar

Popoff M., MacLeod M., Leschen W. (2017). Attitudes towards the use of insect-derived materials in Scottish salmon feeds. J. Insects Food Feed, 3: 131–138. Search in Google Scholar

Ptak A., Józefiak D., Kierończyk B., Rawski M., Żyła K., Świątkiewicz S. (2013). Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Arch. Anim. Breed, 56: 1028–1038. Search in Google Scholar

Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10: 2119. Search in Google Scholar

Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2021). Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in Siberian sturgeon farming: the effects on aquaculture sustainability, economy and fish GIT development. Animals, 11: 604. Search in Google Scholar

Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M., Brugiapaglia A., Zoccarato I., Gasco L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: 1–13. Search in Google Scholar

Robaina L., Pirhonen J., Mente E., Sánchez J., Goosen N. (2019). Fish diets in aquaponics In: Aquaponics food production systems combined aquaculture and hydroponic production technologies for the future. Springer Nature Switzerland AG, Cham, Switzerland. pp. 340. Search in Google Scholar

Roncarati A., Gasco L., Parisi G., Terova G. (2015). Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J. Insects Food Feed, 1: 233–240. Search in Google Scholar

Sealey W.M., Gaylord T.G., Barrows F.T., Tomberlin J.K., McGuire M.A., Ross C., St-Hilaire S. (2011). Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquac. Soc., 42: 34–45. Search in Google Scholar

Secci G., Mancini S., Iaconisi V., Gasco L., Basto A., Parisi G. (2019). Can the inclusion of black soldier fly (Hermetia illucens) in diet affect the flesh quality/nutritional traits of rainbow trout (Oncorhynchus mykiss) after freezing and cooking? Int. J. Food Sci. Nutr., 70: 161–171. Search in Google Scholar

Skrivanova E., Marounek M., Benda V., Brezina P. (2007). Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet. Med., 51: 81–88. Search in Google Scholar

Sørensen S.L., Park Y., Gong Y., Vasanth G.K., Dahle D., Korsnes K., Phuong T.H., Kiron V., Øyen S., Pittman K., Sørensen M. (2021). Nutrient digestibility, growth, mucosal barrier status, and activity of leucocytes from head kidney of Atlantic salmon fed marineor plant-derived protein and lipid sources. Front. Immunol., 11: 623726. Search in Google Scholar

Stejskal V., Tran H.Q., Prokesova M., Gebauer T., Giang P.T., Gai F., Gasco L. (2020). Partially defatted Hermetia illucens larva meal in diet of Eurasian perch (Perca fluviatilis) juveniles. Animals, 10: 1876. Search in Google Scholar

Stenberg O.K., Holen E., Piemontese L., Liland N.S., Lock E.J., Espe M., Belghit I. (2019). Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. Fish Shellfish Immunol., 91: 223–232. Search in Google Scholar

Storebakken T. (2009). Atlantic salmon, Salmo salar. In: Nutrient requirements and feeding of finfish for aquaculture, Webster C.D., Lim C. (eds). Cabi Publishing, pp. 79–102. Search in Google Scholar

Szendrő K., Nagy M.Z., Tóth K. (2020). Consumer acceptance of meat from animals reared on insect meal as feed. Animals, 10: 1312. Search in Google Scholar

Terova G., Gini E., Gasco L., Moroni F., Antonini M., Rimoldi S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J. Anim. Sci. Biotechnol., 12: 30. Search in Google Scholar

Tibbetts S.M., Scaife M.A., Armenta R.E. (2020). Apparent digestibility of proximate nutrients, energy and fatty acids in nutritionallybalanced diets with partial or complete replacement of dietary fish oil with microbial oil from a novel Schizochytrium sp. (T18) by juvenile Atlantic salmon (Salmo salar). Aquaculture, 520: 735003. Search in Google Scholar

Verbeke W., Spranghers T., De Clercq P., De Smet S., Sas B., Eeckhout M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim. Feed Sci. Tech., 204: 72–87. Search in Google Scholar

Weththasinghe P., Hansen J., Nøkland D., Lagos L., Rawski M., Øverland M. (2021 a). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530: 735785.10.1016/j.aquaculture.2020.735785 Search in Google Scholar

Weththasinghe P., Øvrum Hansen J., Rawski M., Józefiak D., Ghimire S., Øverland M. (2021 b). Insects in Atlantic salmon (Salmo salar) diets – comparison between full-fat, defatted, and de-chitinised meals, and oil and exoskeleton fractions. J. Insects Food Feed, 8: 1–14.10.3920/JIFF2021.0094 Search in Google Scholar

Weththasinghe P., Hansen J.Ø., Mydland L.T., Øverland M. (2022) A systematic meta-analysis based review on black soldier fly (Hermetia illucens) as a novel protein source for salmonids. Rev. Aquac., 14: 938–956. Search in Google Scholar

Ytrestøyl T., Aas T.S., Åsgård T. (2015). Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture, 448: 365–374. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo