1. bookTom 23 (2023): Zeszyt 1 (January 2023)
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku
Open Access

Black Soldier Fly Full-Fat Meal in Atlantic Salmon Nutrition – Part A: Effects on Growth Performance, Feed Utilization, Selected Nutriphysiological Traits and Production Sustainability in Fries

Data publikacji: 27 Jan 2023
Tom & Zeszyt: Tom 23 (2023) - Zeszyt 1 (January 2023)
Zakres stron: 225 - 238
Otrzymano: 06 Jun 2022
Przyjęty: 09 Sep 2022
Informacje o czasopiśmie
Pierwsze wydanie
25 Nov 2011
Częstotliwość wydawania
4 razy w roku

Acar Ü., Giannetto A., Giannetto D., Kesbiç O.S., Yılmaz S., Romano A., Tezel R., Türker A., Güllü K. Fazio F. (2021). Evaluation of an innovative and sustainable pre-commercial compound as replacement of fish meal in diets for rainbow trout during pre-fattening phase: Effects on growth performances, haematological parameters and fillet quality traits. Animals 11: 3547. Search in Google Scholar

Allan G.L., Rowland S.J., Parkinson S., Stone D.A.J., Jantrarotai W. (1999). Nutrient digestibility for juvenile silver perch Bidyanus bidyanus: Development of methods. Aquaculture, 170: 131–145. Search in Google Scholar

AOAC (2005). Association of Official Agricultural Chemists. Official Methods of Analysis. AOAC, Arlington, VA, USA. Search in Google Scholar

Arru B., Furesi R., Gasco L., Madau F.A., Pulina P. (2019). The Introduction of insect meal into fish diet: the first economic analysis on European sea bass farming. Sustainability, 11: 1697. Search in Google Scholar

Åsgård T., Shearer K.D. (1997). Dietary phosphorus requirement of juvenile Atlantic salmon, Salmo salar L. Aquac. Nutr., 3: 17–23. Search in Google Scholar

Basto A., Matos E., Valente L.M.P. (2020). Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 521: 735085. Search in Google Scholar

Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Krogdahl Å., Lock E.J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81. Search in Google Scholar

Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å., Lock E.J. (2019 a). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503: 609–619.10.1016/j.aquaculture.2018.12.032 Search in Google Scholar

Belghit I., Waagbø R., Lock E.J., Liland N.S. (2019 b). Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac. Nutr., 25: 343–357.10.1111/anu.12860 Search in Google Scholar

Biancarosa I., Sele V., Belghit I., Ørnsrud R., Lock E.J., Amlund H. (2019). Replacing fish meal with insect meal in the diet of Atlantic salmon (Salmo salar) does not impact the amount of contaminants in the feed and it lowers accumulation of arsenic in the fillet. Food Addit. Contam. Part A Chem. Anal. Control. Expo Risk Assess, 36: 1191–1205. Search in Google Scholar

Bogucka J., Dankowiakowska A., Elminowska-Wenda G., Sobolewska A., Szczerba A., Bednarczyk M. (2016). Effects of prebiotics and synbiotics delivered in ovo on broiler small intestine histomorphology during the first days after hatching. Folia Biol. (Kraków), 64: 131–143. Search in Google Scholar

Bruni L., Randazzo B., Cardinaletti G., Zarantoniello M., Mina F., Secci G., Tulli F., Olivotto I., Parisi G. (2020). Dietary inclusion of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss): Lipid metabolism and fillet quality investigations. Aquaculture, 529: 735678. Search in Google Scholar

Cardinaletti G., Randazzo B., Messina M., Zarantoniello M., Giorgini E., Zimbelli A., Bruni L., Parisi G., Olivotto I., Tulli F. (2019). Effects of graded dietary inclusion level of full-fat Hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 9: 251. Search in Google Scholar

Das H.K., Hattula M.T., Myllymäki O.M., Mälkki Y. (1993). Effects of formulation and processing variables on dry fish feed pellets containing fish waste. J. Sci. Food Agric., 61: 181–187. Search in Google Scholar

Demirci B., Terzi F., Kesbic O.S., Acar U., Yilmaz S., Kesbic F.I. (2021). Does dietary incorporation level of pea protein isolate influence the digestive system morphology in rainbow trout (Oncorhynchus mykiss)? Anat. Histol. Embryol., 50: 956–964. Search in Google Scholar

Elia A.C., Capucchio M.T., Caldaroni B., Magara G., Dörr A.J.M., Biasato I., Biasibetti E., Righetti M., Pastorino P., Prearo M., Gai F., Schiavone A., Gasco L. (2018). Influence of Hermetia illucens meal dietary inclusion on the histological traits, gut mucin composition and the oxidative stress biomarkers in rainbow trout (Oncorhynchus mykiss). Aquaculture, 496: 50–57. Search in Google Scholar

Fawole F.J., Labh S.N., Hossain M.S., Overturf K., Small B.C., Welker T.L., Hardy R.W., Kumar V. (2021). Insect (black soldier fly larvae) oil as a potential substitute for fish or soy oil in the fish meal-based diet of juvenile rainbow trout (Oncorhynchus mykiss). Anim. Nutr., 7: 1360–1370. Search in Google Scholar

Finke M.D. (2007). Estimate of chitin in raw whole insects. Zoo Biology: published in affiliation with the American Zoo and Aquarium Association, 26: 105–115. Search in Google Scholar

Fisher H.J., Collins S.A., Hanson C., Mason B., Colombo S.M., Anderson D.M. (2020). Black soldier fly larvae meal as a protein source in low fish meal diets for Atlantic salmon (Salmo salar). Aquaculture, 521: 734978. Search in Google Scholar

Galkanda-Arachchige H.S.C., Wilson A.E., Davis D.A. (2020). Success of fishmeal replacement through poultry by-product meal in aquaculture feed formulations: a meta-analysis. Rev. Aquac., 12: 1624–1636. Search in Google Scholar

Gasco L., Gai F., Maricchiolo G., Genovese L., Ragonese S., Bottari T., Caruso G. (2018). Fishmeal alternative protein sources for aquaculture feeds. In: Feeds for the aquaculture sector. Springer, Cham. pp. 1–28. Search in Google Scholar

Gaudioso G., Marzorati G., Faccenda F., Weil T., Lunelli F., Cardinaletti G., Marino G., Olivotto I., Parisi G., Tibaldi E., Tuohy K.M., Fava F. (2021). Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: Impact on intestinal microbiota and inflammatory markers. Int. J. Mol. Sci., 22: 5454. Search in Google Scholar

Goyal S., Ott D., Liebscher J., Höfling D., Müller A., Dautz J., Gutzeit H.O., Schmidt D., Reuss R. (2021). Sustainability analysis of fish feed derived from aquatic plant and insect. Sustainability, 13: 7371. Search in Google Scholar

Gündoğdu S., Eroldoğan O.T., Evliyaoğlu E., Turchini G.M., Wu X.G. (2021). Fish out, plastic in: Global pattern of plastics in commercial fishmeal. Aquaculture, 534: 736316. Search in Google Scholar

Henry M., Gasco L., Piccolo G., Fountoulaki E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol., 203: 1–22. Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Merida S., Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann. Anim. Sci., 20: 579–598. Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Mérida S., Kołodziejski P., Pruszyńska-Oszmałek E., Mazurkiewicz J. (2021 a). Mealworm meal use in sea trout (Salmo trutta m. trutta, L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters. Aquac. Nutr., 27: 1512–1528.10.1111/anu.13293 Search in Google Scholar

Hoffmann L., Rawski M., Pruszyńska-Oszmałek E., Kołodziejski P. Mazurkiewicz J. (2021 b). Environmentally sustainable feeding system for sea trout (Salmo trutta m. trutta): Live food and insect meal-based diets in larval rearing. Aquac. Rep., 21: 100795.10.1016/j.aqrep.2021.100795 Search in Google Scholar

Hosfeld C.D., Hammer J., Handeland S.O., Fivelstad S., Stefansson S.O. (2009). Effects of fish density on growth and smoltification in intensive production of Atlantic salmon (Salmo salar L.). Aquaculture, 294: 236–241. Search in Google Scholar

Huang Y., Wen X., Li S., Li W., Zhu D. (2016). Effects of dietary lipid levels on growth, feed utilization, body composition, fatty acid profiles and antioxidant parameters of juvenile chu’s croaker Nibea coibor. Aquac. Int., 24: 1229–1245. Search in Google Scholar

Irungu F.G., Mutungi C.M., Faraj A.K., Affognon H., Kibet N., Tanga C., Ekesi S., Nakimbugwe D., Fiaboe K.K.M. (2018). Physicochemical properties of extruded aquafeed pellets containing black soldier fly (Hermetia illucens) larvae and adult cricket (Acheta domesticus) meals. J. Insects Food Feed, 4: 19–30. Search in Google Scholar

Jannathulla R., Rajaram V., Kalanjiam R., Ambasankar K., Muralidhar M., Dayal J.S. (2019). Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquac. Res., 50: 3493–3506. Search in Google Scholar

Janssen R.H., Vincken J.P., Van Den Broek L.A.M., Fogliano V., Lakemond C.M.M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem., 65: 2275–2278. Search in Google Scholar

Józefiak A., Nogales-Mérida S., Mikołajczak Z., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). The utilization of full-fat insect meal in rainbow trout (Oncorhynchus mykiss) nutrition: the effects on growth performance, intestinal microbiota and gastrointestinal tract histomorphology. Ann. Anim. Sci., 19: 747–765. Search in Google Scholar

Juntti S.A., Fernald R.D. (2016). Timing reproduction in teleost fish: cues and mechanisms. Curr. Opin. Neurobiol., 38: 57–62. Search in Google Scholar

Kannadhason S., Muthukumarappan K., Rosentrater K. (2009). Effects of ingredients and extrusion parameters on aquafeeds containing DDGS and tapioca starch. J. Aquac. Feed Sci. Nutr., 1: 6–21. Search in Google Scholar

Ketola H.G. (1975). Requirement of Atlantic salmon for dietary phosphorus. Trans. Am. Fish Soc., 104: 548–551. Search in Google Scholar

Khater E.S.G., Bahnasawy A.H., Ali S.A. (2014). Physical and mechanical properties of fish feed pellets. J. Food Process Technol., 5: 1. Search in Google Scholar

Kierończyk B., Rawski M., Józefiak A., Mazurkiewicz J., Świątkiewicz S., Siwek M., Bednarczyk M., Szumacher-Strabel M., Cieślak A., Benzertiha A., Józefiak D. (2018). Effects of replacing soybean oil with selected insect fats on broilers. Anim. Feed Sci. Tech., 240: 170–183. Search in Google Scholar

Kierończyk B., Sypniewski J., Rawski M., Czekała W., Swiatkiewicz S., Józefiak D. (2020). From waste to sustainable feed material: the effect of Hermetia Illucens oil on the growth performance, nutrient digestibility, and gastrointestinal tract morphometry of broiler chickens. Ann. Anim. Sci., 20: 157–177. Search in Google Scholar

Lazzarotto V., Corraze G., Leprevost A., Quillet E., Dupont-Nivet M., Médale F. (2015). Three-year breeding cycle of rainbow trout (Oncorhynchus mykiss) fed a plant-based diet, totally free of marine resources: Consequences for reproduction, fatty acid composition and progeny survival. PLoS One, 10(2), e0117609.10.1371/journal.pone.0117609432009525658483 Search in Google Scholar

Leary S., Underwood W., Anthony R., Cartner S. (2013). AVMA guidelines for the euthanasia of animals: 2013 edition. Schaumburg, IL: American Veterinary Medical Association. Search in Google Scholar

Li Y., Bruni L., Jaramillo-Torres A., Kortner T.M., Chikwati E.M., Belghit I., Lock E.J., Krogdahl Å. (2019). Gut health and microbiota in post-smolt Atlantic salmon (Salmo salar) fed larvae meal from black soldier fly (Hermetia illucens). In: Aquaculture Europe, 2019. Search in Google Scholar

Li Y., Kortner T.M., Chikwati E.M., Belghit I., Lock E.J., Krogdahl Å. (2020). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture, 520: 734967. Search in Google Scholar

Liu K., Frost J., Welker T.L., Barrows F.T. (2021). Comparison of new and conventional processing methods for their effects on physical properties of fish feed. Anim. Feed Sci. Tech., 273: 114818. Search in Google Scholar

Luthada-Raswiswi R., Mukaratirwa S., O’Brien G. (2021). Animal protein sources as a substitute for fishmeal in aquaculture diets: a systematic review and meta-analysis. Appl. Sci., 11: 3854. Search in Google Scholar

Marono S., Piccolo G., Loponte R., Meo C. Di, Attia Y.A., Nizza A. Bovera F. (2015). In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital. J. Anim. Sci., 14: 3889. Search in Google Scholar

Meneguz M., Schiavone A., Gai F., Dama A., Lussiana C., Renna M., Gasco L. (2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. J. Sci. Food Agric., 98: 5776–5784. Search in Google Scholar

Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10: 1031. Search in Google Scholar

Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Kołodziejski P., Pruszyńska-Oszmałek E., Józefiak D. (2022). The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal, 16: 100516. Search in Google Scholar

Munshi J.S.D., Dutta H.M. (1998). Fish morphology: Horizon of new research. CRC Press LCC. Search in Google Scholar

Myers W.D., Ludden P.A., Nayigihugu V., Hess B.W. (2004). Technical note: A procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci., 82: 179–183. Search in Google Scholar

National Research Council (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press, Washington, DC. Search in Google Scholar

Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591: 551–563. Search in Google Scholar

Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103. Search in Google Scholar

Olsen R.E., Suontama J., Langmyhr E., Mundheim H., Ringø E., Melle W., Malde M.K., Hemre G.I. (2006). The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar. Aquac. Nutr., 12: 280–290. Search in Google Scholar

Ptak A., Józefiak D., Kierończyk B., Rawski M., Żyła K., Świątkiewicz S. (2013). Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Arch. Anim. Breed, 56: 1028–1038. Search in Google Scholar

Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10: 2119. Search in Google Scholar

Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2021). Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in Siberian sturgeon farming: the effects on aquaculture sustainability, economy and fish GIT development. Animals, 11: 604. Search in Google Scholar

Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M., Brugiapaglia A., Zoccarato I., Gasco L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol., 8: 1–13. Search in Google Scholar

Spranghers T., Ottoboni M., Klootwijk C., Ovyn A., Deboosere S., De Meulenaer B., Michiels J., Eeckhout M., De Clercq P., De Smet S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric., 97: 2594–2600. Search in Google Scholar

Stejskal V., Tran H.Q., Prokesova M., Gebauer T., Giang P.T., Gai F., Gasco L. (2020). Partially defatted Hermetia illucens larva meal in diet of Eurasian perch (Perca fluviatilis) juveniles. Animals, 10: 1876. Search in Google Scholar

Stenberg O.K., Holen E., Piemontese L., Liland N.S., Lock E.J., Espe M., Belghit I. (2019). Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. Fish Shellfish Immunol, 91: 223–232. Search in Google Scholar

Storebakken T. (2009). Atlantic salmon, Salmo salar. In: Nutrient requirements and feeding of finfish for aquaculture, Webster C.D., Lim C. (eds). CABI Publishing, pp. 79–102. Search in Google Scholar

Tang Z., Yin Y., Zhang Y., Huang R., Sun Z., Li T., Chu W., Kong X., Li L., Geng M., Tu Q. (2008). Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Br. J. Nutr., 101: 998–1005. Search in Google Scholar

Umar S., Kamarudin M.S., Ramezani-Fard E. (2013). Physical properties of extruded aquafeed with a combination of sago and tapioca starches at different moisture contents. Anim. Feed Sci. Technol., 183: 51–55. Search in Google Scholar

Weththasinghe P., Hansen J., Nøkland D., Lagos L., Rawski M., Øverland M. (2021 a). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530: 735785.10.1016/j.aquaculture.2020.735785 Search in Google Scholar

Weththasinghe P., Øvrum Hansen J., Rawski M., Józefiak D., Ghimire S., Øverland M. (2021 b). Insects in Atlantic salmon (Salmo salar) diets – comparison between full-fat, defatted, and de-chitinised meals, and oil and exoskeleton fractions. J. Insects Food Feed, 8: 1235–1247.10.3920/JIFF2021.0094 Search in Google Scholar

Xia J., Ge C., Yao H. (2021). Antimicrobial peptides from black soldier fly (Hermetia illucens) as potential antimicrobial factors representing an alternative to antibiotics in livestock farming. Animals, 11: 1937. Search in Google Scholar

Zarantoniello M., Randazzo B., Nozzi V., Truzzi C., Giorgini E., Cardinaletti G., Freddi L., Ratti S., Girolametti F., Osimani A., Notarstefano V., Milanović V., Riolo P., Isidoro N., Tulli F., Gioacchini G., Olivotto I. (2021). Physiological responses of Siberian sturgeon (Acipenser baerii) juveniles fed on full-fat insect-based diet in an aquaponic system. Science, 11: 1–13. Search in Google Scholar

Polecane artykuły z Trend MD

Zaplanuj zdalną konferencję ze Sciendo