1. bookAHEAD OF PRINT
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Black soldier fly full-fat meal in Atlantic salmon nutrition – Part B: Effects on growth performance, feed utilization, selected nutriphysiological traits and production sustainability in pre-smolts

Published Online: 30 Sep 2022
Volume & Issue: AHEAD OF PRINT
Page range: -
Received: 06 Jun 2022
Accepted: 09 Sep 2022
Journal Details
License
Format
Journal
eISSN
2300-8733
First Published
25 Nov 2011
Publication timeframe
4 times per year
Languages
English

Alfiko Y., Xie D., Astuti R.T., Wong J., Wang L. (2022). Insects as a feed ingredient for fish culture: Status and trends. Aquac Fish, 7, 166–178.10.1016/j.aaf.2021.10.004 Search in Google Scholar

Allan G.L., Rowland S.J., Parkinson S., Stone D.A.J., Jantrarotai W. (1999). Nutrient digestibility for juvenile silver perch Bidyanus bidyanus: Development of methods. Aquaculture, 170(2), 131-145.10.1016/S0044-8486(98)00397-4 Search in Google Scholar

Association of Official Agricultural Chemists (AOAC) 2005. Official Methods of Analysis. AOAC, Arlington, VA, USA Search in Google Scholar

Askarian F., Zhou Z., Olsen R.E., Sperstad S., Ringø E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture 326, 1-8..10.1016/j.aquaculture.2011.10.016 Search in Google Scholar

Austreng E. (1978). Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 13(3), 265-272.10.1016/0044-8486(78)90008-X Search in Google Scholar

Bazoche P., Poret S. (2016). What do trout eat: Acceptance of insects in animal feed. J Recherche Sci Soc, 1–4. Search in Google Scholar

Belghit I., Liland N.S., Gjesdal P., Biancarosa I., Menchetti E., Li Y., Waagbø R., Krogdahl Å. Lock E.J. (2019a). Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture, 503, 609-619..10.1016/j.aquaculture.2018.12.032 Search in Google Scholar

Belghit I., Waagbø R., Lock E.J. Liland N.S. (2019b). Insect-based diets high in lauric acid reduce liver lipids in freshwater Atlantic salmon. Aquac Nutr 25, 343–357.10.1111/anu.12860 Search in Google Scholar

Bogucka J., Dankowiakowska A., Elminowska-Wenda G., Sobolewska A., Szczerba A., Bednarczyk M. (2016). Effects of prebiotics and synbiotics delivered in ovo on broiler small intestine histomorphology during the first days after hatching. Folia Biologica (Kraków, Poland), 64(3), 131-143.10.3409/fb64_3.131 Search in Google Scholar

Bruni L., Belghit I., Lock E.J., Secci G., Taiti C. Parisi G. (2020). Total replacement of dietary fish meal with black soldier fly (Hermetia illucens) larvae does not impair physical, chemical or volatile composition of farmed Atlantic salmon (Salmo salar L.). J Sci Food Agric, 100(3), 1038-1047..10.1002/jsfa.10108 Search in Google Scholar

Cardinaletti G., Randazzo B., Messina M., Zarantoniello M., Giorgini E., Zimbelli A., Bruni L., Parisi G., Olivotto I., Tulli F. (2019). Effects of graded dietary inclusion level of full-fat hermetia illucens prepupae meal in practical diets for rainbow trout (Oncorhynchus mykiss). Animals, 529, 735678.10.3390/ani9050251 Search in Google Scholar

Choubert G., De la Noüe J. Luquet P. (1982). Digestibility in fish: Improved device for the automatic collection of feces. Aquaculture 29, 1–2, 185-189.10.1016/0044-8486(82)90048-5 Search in Google Scholar

National Research Council (2011). Nutrient Requirements of Fish and Shrimp. The National Academies Press, Washington, DC. Search in Google Scholar

Davidson J., Kenney P.B., Barrows F.T., Good C., Summerfelt S.T. (2018). Fillet Quality and Processing Attributes of Postsmolt Atlantic Salmon, Salmo salar, Fed a Fishmeal-free Diet and a Fishmeal-based Diet in Recirculation Aquaculture Systems. J World Aquac Soc 49, 183–196.10.1111/jwas.12452 Search in Google Scholar

Dietz C., Liebert F. (2018). Does graded substitution of soy protein concentrate by an insect meal respond on growth and N-utilization in Nile tilapia (Oreochromis niloticus)? Aquac Rep, 12, 43-48.10.1016/j.aqrep.2018.09.001 Search in Google Scholar

Dumas A., Raggi T., Barkhouse J., Lewis E., Weltzien E. (2018). The oil fraction and partially defatted meal of black soldier fly larvae (Hermetia illucens) affect differently growth performance, feed efficiency, nutrient deposition, blood glucose and lipid digestibility of rainbow trout (Oncorhynchus mykiss). Aquaculture, 492, 24-34.10.1016/j.aquaculture.2018.03.038 Search in Google Scholar

Egerton S., Wan A., Murphy K., Collins F., Ahern G., Sugrue I., Busca K., Egan F., Muller N., Whooley J., McGinnity P., Culloty S., Ross R.P., Stanton C (2020). Replacing fishmeal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep, 10(1), 1-16.10.1038/s41598-020-60325-7706023232144276 Search in Google Scholar

English G., Wanger G., Colombo S.M. (2021). A review of advancements in black soldier fly (Hermetia illucens) production for dietary inclusion in salmonid feeds. J Sci Food Agric, 5, 100164.10.1016/j.jafr.2021.100164 Search in Google Scholar

Franco A., Scieuzo C., Salvia R., Petrone A.M., Tafi E., Moretta A., Schmitt E. Falabella P. (2021). Lipids from Hermetia illucens, an Innovative and Sustainable Source. Sustainability 13(18), 10198.10.3390/su131810198 Search in Google Scholar

Gong Y., Bandara T., Huntley M., Johnson Z.I., Dias J., Dahle D., Sørensen M., Kiron V. (2019). Microalgae Scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo salar L.). Aquaculture, 501, 455–464.10.1016/j.aquaculture.2018.11.049 Search in Google Scholar

Gopalakannan A., Arul V. (2006). Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 255, 179–187.10.1016/j.aquaculture.2006.01.012 Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Mérida S., Kołodziejski P., Pruszyńska-Oszmałek E., Mazurkiewicz J. (2021). Mealworm meal use in sea trout (Salmo trutta m. trutta, L.) fingerling diets: effects on growth performance, histomorphology of the gastrointestinal tract and blood parameters. Aquac Nutr, 27, 1512–1528.10.1111/anu.13293 Search in Google Scholar

Hoffmann L., Rawski M., Nogales-Merida S. Mazurkiewicz J. (2020). Dietary inclusion of Tenebrio molitor meal in sea trout larvae rearing: Effects on fish growth performance, survival, condition, and GIT and liver enzymatic activity. Ann Anim Sci, 20(2), 579-598.10.2478/aoas-2020-0002 Search in Google Scholar

Hossain M.S., Fawole F.J., Labh S.N., Small B.C., Overturf K. Kumar V. (2021). Insect meal inclusion as a novel feed ingredient in soy-based diets improves performance of rainbow trout (Oncorhynchus mykiss). Aquaculture 544, 737096.10.1016/j.aquaculture.2021.737096 Search in Google Scholar

Hua K. (2021). A meta-analysis of the effects of replacing fish meals with insect meals on growth performance of fish. Aquaculture 530, 735732.10.1016/j.aquaculture.2020.735732 Search in Google Scholar

Husein Y., Bruni L., Secci G., Taiti C., Belghit I., Lock E.J., Parisi G. (2021). Does sous-vide cooking preserve the chemical and volatile composition of Atlantic salmon (Salmo salar L.) fed Hermetia illucens larvae meal? J Insects Food Feed 7, 69–77.10.3920/JIFF2020.0002 Search in Google Scholar

Janssen R.H., Vincken J.P., Van Den Broek L.A.M., Fogliano V. Lakemond C.M.M. (2017). Nitrogen-to-Protein Conversion Factors for Three Edible Insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J Agric Food Chem, 65(11), 2275-2278.10.1021/acs.jafc.7b00471536443028252948 Search in Google Scholar

Józefiak A., Nogales-Mérida S., Mikołajczak Z., Rawski M., Kierończyk B., Mazurkiewicz J. (2019). The Utilization of Full-Fat Insect Meal in Rainbow Trout (Oncorhynchus mykiss) Nutrition: The Effects on Growth Performance, Intestinal Microbiota and Gastrointestinal Tract Histomorphology. Ann Anim Sci 19(3), 747-765..10.2478/aoas-2019-0020 Search in Google Scholar

Krogdahl Å., Sundby A., Holm H. (2015). Characteristics of digestive processes in Atlantic salmon (Salmo salar). Enzyme pH optima, chyme pH, and enzyme activities. Aquaculture 449, 27–36.10.1016/j.aquaculture.2015.02.032 Search in Google Scholar

Laureati M., Proserpio C., Jucker C. Savoldelli S. (2016). New sustainable protein sources: Consumers’ willingness to adopt insects as feed and food. Ital J Food Sci, 28(4). Search in Google Scholar

Li Y., Bruni L., Jaramillo-Torres A., Gajardo K., Kortner T.M., Krogdahl A. (2020a). Differential Response of Digesta and Mucosa-Associated Intestinal Microbiota to Dietary Black Soldier Fly (Hermetia illucens) Larvae Meal in Seawater Phase Atlantic Salmon (Salmo salar). bioRxiv.10.21203/rs.3.rs-62266/v1 Search in Google Scholar

Li Y., Kortner T.M., Chikwati E.M., Belghit I., Lock E.J., Krogdahl Å. (2020b). Total replacement of fish meal with black soldier fly (Hermetia illucens) larvae meal does not compromise the gut health of Atlantic salmon (Salmo salar). Aquaculture 520, 734967.10.1016/j.aquaculture.2020.734967 Search in Google Scholar

Lock E.R., Arsiwalla T., Waagbø R. (2016). Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac Nutr 22(6), 1202-1213.10.1111/anu.12343 Search in Google Scholar

Mancuso T., Baldi L., Gasco L. (2016). An empirical study on consumer acceptance of farmed fish fed on insect meals: the Italian case. Aquac Int 24(5), 1489-1507.10.1007/s10499-016-0007-z Search in Google Scholar

Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals 10(6), 1031. Search in Google Scholar

Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Kołodziejski P., Pruszyńska-Oszmałek E., Józefiak D. (2022). The first insight into black soldier fly meal in brown trout nutrition as an environmentally sustainable fish meal replacement. Animal 16, 100516.10.1016/j.animal.2022.100516 Search in Google Scholar

Mohan K., Rajan D.K., Muralisankar T., Ganesan A.R., Sathishkumar P., Revathi N. (2022). Use of black soldier fly (Hermetia illucens L.) larvae meal in aquafeeds for a sustainable aquaculture industry: A review of past and future needs. Aquaculture 553, 738095. Search in Google Scholar

Munshi J.S.D., Dutta H.M. (1998). Fish morphology: Horizon of new research. CRC Press LCC. Search in Google Scholar

Naylor R.L., Hardy R.W., Buschmann A.H., Bush S.R., Cao L., Klinger D.H., Little D.C., Lubchenco J., Shumway S.E., Troell M. (2021). A 20-year retrospective review of global aquaculture. Nature, 591, 551–563.10.1038/s41586-021-03308-6 Search in Google Scholar

Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Rawski M., Kierończyk B., Józefiak A. (2018). Insect meals in fish nutrition. Rev Aquac, 11(4), 1080-1103.10.1111/raq.12281 Search in Google Scholar

Nordgarden U., Hemre G.I., Hansen T. (2002). Growth and body composition of Atlantic salmon (Salmo salar L.) parr and smolt fed diets varying in protein and lipid contents. Aquaculture, 207, 65–78.10.1016/S0044-8486(01)00750-5 Search in Google Scholar

Palma L., Fernandez-Bayo J., Niemeier D., Pitesky M., VanderGheynst J.S. (2019). Managing high fiber food waste for the cultivation of black soldier fly larvae. npj Sci Food 3, 15.10.1038/s41538-019-0047-7671866731508493 Search in Google Scholar

Popoff M., MacLeod M., Leschen W. (2017). Attitudes towards the use of insect-derived materials in Scottish salmon feeds. J. Insects Food Feed, 3(2), 131-138.10.3920/JIFF2016.0032 Search in Google Scholar

Ptak A., Józefiak D., Kierończyk B., Rawski M., Żyła K., Świątkiewicz S. (2013). Effect of different phytases on the performance, nutrient retention and tibia composition in broiler chickens. Arch Anim Breed, 56(1), 1028-1038.10.7482/0003-9438-56-104 Search in Google Scholar

Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in siberian sturgeon nutrition: The effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10(11), 2119.10.3390/ani10112119769704833203187 Search in Google Scholar

Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2021). Black Soldier Fly Full-Fat Larvae Meal is More Profitable than Fish Meal and Fish Oil in Siberian Sturgeon Farming: The Effects on Aquaculture Sustainability, Economy and Fish GIT Development. Animals,  11(3), 604..10.3390/ani11030604799616133668867 Search in Google Scholar

Renna M., Schiavone A., Gai F., Dabbou S., Lussiana C., Malfatto V., Prearo M., Capucchio M.T., Biasato I., Biasibetti E., De Marco M., Brugiapaglia A., Zoccarato I., Gasco L. (2017). Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J Anim Sci Biotechnol, 8(1), 1-13. Search in Google Scholar

Robaina L., Pirhonen J., Mente E., Sánchez J., Goosen N. (2019). Fish Diets in Aquaponics In: Aquaponics food production systems combined aquaculture and hydroponic production technologies for the future. Springer Nature Switzerland AG, Cham, Switzerland. pp. 340 Search in Google Scholar

Roncarati A., Gasco L., Parisi G., Terova G. (2015). Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J Insects Food Feed, 1, 233–240.10.3920/JIFF2014.0006 Search in Google Scholar

De Santis C., Tocher D.R., Ruohonen K., El-Mowafi A., Martin S.A.M., Dehler C.E., Secombes C.J., Crampton V. (2016). Air-classified faba bean protein concentrate is efficiently utilized as a dietary protein source by post-smolt Atlantic salmon (Salmo salar). Aquaculture, 452, 169–177.10.1016/j.aquaculture.2015.10.035 Search in Google Scholar

Sealey W.M., Gaylord T.G., Barrows F.T., Tomberlin J.K., McGuire M.A., Ross C., St-Hilaire S. (2011). Sensory Analysis of Rainbow Trout, Oncorhynchus mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia illucens. J World Aquac Soc, 42(1), 34-45..10.1111/j.1749-7345.2010.00441.x Search in Google Scholar

Secci G., Mancini S., Iaconisi V., Gasco L., Basto A. Parisi G. (2019). Can the inclusion of black soldier fly (Hermetia illucens) in diet affect the flesh quality/nutritional traits of rainbow trout (Oncorhynchus mykiss) after freezing and cooking? Int J Food Sci Nutr, 70, 161–171.10.1080/09637486.2018.148952930012023 Search in Google Scholar

Skrivanova E., Marounek M., Benda V. Brezina P. (2007). Susceptibility of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and monolaurin. Vet Med, 51(3), 81-88. Search in Google Scholar

Sørensen S.L., Park Y., Gong Y., Vasanth G.K., Dahle D., Korsnes K., Phuong T.H., Kiron V., Øyen S., Pittman K., Sørensen M. (2021). Nutrient Digestibility, Growth, Mucosal Barrier Status, and Activity of Leucocytes From Head Kidney of Atlantic Salmon Fed Marine- or Plant-Derived Protein and Lipid Sources. Front Immunol, 11, 623726.10.3389/fimmu.2020.623726793462433679713 Search in Google Scholar

Stejskal V., Tran H.Q., Prokesova M., Gebauer T., Giang P.T., Gai F., Gasco L. (2020). Partially defatted Hermetia illucens larva meal in diet of eurasian perch (Perca fluviatilis) juveniles. Animals, 10(10), 1876.10.3390/ani10101876760240233066664 Search in Google Scholar

Stenberg O.K., Holen E., Piemontese L., Liland N.S., Lock E.J., Espe M., Belghit I. (2019). Effect of dietary replacement of fish meal with insect meal on in vitro bacterial and viral induced gene response in Atlantic salmon (Salmo salar) head kidney leukocytes. Fish Shellfish Immunol, 91, 223-232.10.1016/j.fsi.2019.05.04231121289 Search in Google Scholar

Storebakken T. (2009). Atlantic salmon, Salmo salar. In Nutrient requirements and feeding of finfish for aquaculture, 79-102. Search in Google Scholar

Szendrő K., Nagy M.Z., Tóth K. (2020). Consumer Acceptance of Meat from Animals Reared on Insect Meal as Feed. Animals, 10(8), 1312.10.3390/ani10081312746050032751612 Search in Google Scholar

Terova G., Gini E., Gasco L., Moroni F., Antonini M., Rimoldi S. (2021). Effects of full replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow trout gut and skin microbiota. J Anim Sci Biotechnol, 12, 30.10.1186/s40104-021-00551-9786000633536078 Search in Google Scholar

Tibbetts S.M., Scaife M.A., Armenta R.E. (2020). Apparent digestibility of proximate nutrients, energy and fatty acids in nutritionally-balanced diets with partial or complete replacement of dietary fish oil with microbial oil from a novel Schizochytrium sp. (T18) by juvenile Atlantic salmon (Salmo salar). Aquaculture, 520, 735003. Search in Google Scholar

Verbeke W., Spranghers T., De Clercq P., De Smet S., Sas B., Eeckhout M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim Feed Sci Tech, 204, 72-87.10.1016/j.anifeedsci.2015.04.001 Search in Google Scholar

Weththasinghe P., Hansen J.Ø., Mydland L.T., Øverland M. (2022) A systematic meta-analysis based review on black soldier fly (Hermetia illucens) as a novel protein source for salmonids. Rev Aquac, 14(2), 938-956.10.1111/raq.12635 Search in Google Scholar

Weththasinghe P., Hansen J., Nøkland D., Lagos L., Rawski M., Øverland M. (2021a). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530, 735785.10.1016/j.aquaculture.2020.735785 Search in Google Scholar

Weththasinghe P., Øvrum Hansen J., Rawski M., Józefiak D., Ghimire S., Øverland M. (2021b). Insects in Atlantic salmon (Salmo salar) diets – comparison between full-fat, defatted, and de-chitinised meals, and oil and exoskeleton fractions. J Insects Food Feed, 1–14.10.3920/JIFF2021.0094 Search in Google Scholar

Ytrestøyl T., Aas T.S., Åsgård T. (2015). Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture, 448, 365–374.10.1016/j.aquaculture.2015.06.023 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo