Otwarty dostęp

Selected metabolic, epigenetic, nitration and redox parameters in turkeys fed diets with different levels of arginine and methionine


Zacytuj

Al-Daraji H.J., Al-Mashadani A.A., Al-Hayani W.K., Al.-Hassani A.S., Mirza H.A. (2011). Influence of in ovo injection of L-arginine on productive and physiological performance of quails. Res. Opin. Anim. Vet. Sci., 7: 463–467.Search in Google Scholar

Antonilli M., Bottari E., Festa M.R., Gentile L. (2009). Complex formation between arginine and calcium (II) and magnesium (II). Chem. Spec. Bioavailab., 21: 33–40.10.3184/095422909X418502Search in Google Scholar

AOAC International (2005). Official methods of analysis. 18th ed. Washington.Search in Google Scholar

Atakisi O., Atakisi E., Kart A. (2009). Effects of dietary zinc and L-arginine supplementation on total antioxidants capacity, lipid peroxidation, nitric oxide, egg weight, and blood biochemical values in Japanese quails. Biol. Trace Elem. Res., 132: 136–143.10.1007/s12011-009-8378-xSearch in Google Scholar

Balnave D., Brake J. (2002). Re-evaluation of the classical dietary arginine: lysine interaction for modern poultry diets: a review. Worlds Poultry Sci. J., 58: 275–289.10.1079/WPS20020021Search in Google Scholar

Bowen S.J., Washburn K.W., Huston T.M. (1984). Involvement of the thyroid gland in the response of the young chicken to heat stress. Poultry Sci., 63: 66–69.10.3382/ps.0630066Search in Google Scholar

British United Turkeys (BUT) (2013). Aviagen Turkeys. Management guidelines for raising commercial turkeys. Retrieved from https://www.aviagenturkeys.com/media/183481/aviagencommercial-guide.pdf [accessed 15 Oct 2013].Search in Google Scholar

Carew L.B., Evarts K.G., Alster F.A. (1997). Growth and plasma thyroid hormone concentrations of chicks fed diets deficient in essential amino acids. Poultry Sci., 6: 1398–1404.10.1093/ps/76.10.1398Search in Google Scholar

Cravener T.L., Vasilatos-Younken R., Wellenreitter R.H. (1989). Effect of subcutaneous infusion of pituitary-derived chicken growth hormone on growth performance of broiler pullets. Poultry Sci., 68: 1133–1140.10.3382/ps.0681133Search in Google Scholar

Cudic P., Joshi N., Sagher D., Williams B.T., Stawikowski M.J., Weissbach H. (2016). Identification of activators of methionine sulfoxide reductases A and B. Biochem. Biophys. Res. Commun., 469: 863–867.10.1016/j.bbrc.2015.12.077Search in Google Scholar

Darras V.M., Berghman L.R., Vanderpooten S.M., Kuhn E.R. (1992). Growth hormone actually decreases type III iodothyronine deiodinase in chicken liver. FEBS Lett., 310: 5–8.10.1016/0014-5793(92)81133-7Search in Google Scholar

Davidson I. (2003). Hydrolysis of samples for amino acid analysis. In: Protein sequencing protocols. Methods in molecular biology, Smith B.J. (ed.). Humana Press, pp. 111–122.10.1385/1-59259-342-9:111Search in Google Scholar

Emadi M., Jahanshiri F., Kaveh K., Hair-Bejo M., Ideris A., Alimon A.R. (2011). Nutrition and immunity: The effects of the combination of arginine and tryptophan on growth performance, serum parameters and immune response in broiler chickens challenged with infectious bursal disease vaccine. Avian Pathol., 40: 63–72.10.1080/03079457.2010.539590Search in Google Scholar

Fernandes J.I.M., Murakami A.E. (2010). Arginine metabolism in uricotelic species. Acta Sci. Anim. Sci., 32: 357–366.10.4025/actascianimsci.v32i4.10990Search in Google Scholar

Flakoll P.J., Borel M.J., Wentzel L.S., Williams P.E., Lacy D.B., Abumrad N.N. (1994). The role of glucagon in the control of protein and amino acid metabolism in vivo. Metab. Clin. Exp., 43: 1509–1516.10.1016/0026-0495(94)90009-4Search in Google Scholar

Fouad A.M., El-Senousey H.K., Yang X.J., Yao J.H. (2012). Role of dietary L-arginine in poultry production. Int. J. Poultry Sci., 11: 718–729.10.3923/ijps.2012.718.729Search in Google Scholar

Fouad A.M., El-Senousey H.K., Yang X.J., Yao J.H. (2013). Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal, 7: 1239–1245.10.1017/S1751731113000347Search in Google Scholar

Goudarz S., Mohaddeseh A., Siamak A.R. (2009). Role of nitric oxide in the plasma lipid profile in the rabbits. Arch. Med. Sci., 5: 308–312.Search in Google Scholar

Grisham M.B., Jourd’Heuil D., Wink D.A. (1999). Nitric oxide: Physiological chemistry of nitric oxide and its metabolites: Implications in inflammation. Am. J. Physiol., 276: 315–321.10.1152/ajpgi.1999.276.2.G315Search in Google Scholar

Handique B., Saikia G., Dowarah R., Saikia B.N., Tamuly S. (2019 a). Effect of supplementation of synthetic lysine and methionine on serum biochemical profile, carcass characteristics and meat composition in broiler chicken. Indian J. Anim. Nutr., 36: 40–46.10.5958/2231-6744.2019.00007.0Search in Google Scholar

Handique B., Yengkhom R., Kumar L.M. (2019 b). Lysine and methionine supplementation in commercial broiler chicken: A review. J. Entomol. Zool. Stud., 7: 193–196.Search in Google Scholar

Holm C. (2003). Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans., 31: 1120–1124.10.1042/bst0311120Search in Google Scholar

Hu Y.D., Tan J.Z., Qi J., Zhang H. (2016). Regulatory effects of dietary L-Arg supplementation on the innate immunity and antioxidant ability in broiler chickens. J. Integr. Agricul., 15: 2578–2587.10.1016/S2095-3119(16)61404-1Search in Google Scholar

Jahanian R. (2009). Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poultry Sci., 88: 1818–1824.10.3382/ps.2008-00386Search in Google Scholar

Jankowski J., Kubińska M., Zduńczyk Z. (2014). Nutritional and immunomodulatory function of methionine in poultry diets – a review. Ann. Anim. Sci., 14: 17–31.10.2478/aoas-2013-0081Search in Google Scholar

Jankowski J., Kubińska M., Juśkiewicz J., Czech A., Ognik K., Zduńczyk Z. (2017 a). Effect of different dietary methionine levels on the growth performance and tissue redox parameters. Poultry Sci., 96: 1235–1243.10.3382/ps/pew38328158618Search in Google Scholar

Jankowski J., Ognik K., Kubińska M., Czech A., Juśkiewicz J., Zduńczyk Z. (2017 b). The effect of different dietary levels and sources of methionine on the metabolic parameters, redox status, immune response and growth performance of turkeys. Poultry Sci., 96: 3229–3238.10.3382/ps/pex09928521012Search in Google Scholar

Jankowski J., Tykałowski B., Ognik K., Koncicki A., Kubińska M., Zduńczyk Z. (2018). The effect of different dietary levels of DL-methionine and DL-hydroxy analogue on the antioxidant status of young turkeys infected with the haemorrhagic enteritis virus. BMC Vet. Res., 14: 1–8.10.1186/s12917-018-1727-2Search in Google Scholar

Jankowski J., Mikulski D., Mikulska M., Ognik K., Całyniuk Z., Mróz E., Zduńczyk Z. (2020 a). The effect of different dietary ratios of arginine, methionine, and lysine on the performance, carcass traits, and immune status of turkeys. Poultry Sci., 99: 1028–1137.10.1016/j.psj.2019.10.008758764132036960Search in Google Scholar

Jankowski J., Ognik K., Całyniuk Z., Stępniowska A., Konieczka P., Mikulski D. (2020 b). The effect of different dietary ratios of lysine, arginine and methionine on protein nitration and oxidation reactions in turkey tissues and DNA. Animal, 15: 100183.10.1016/j.animal.2021.10018333637439Search in Google Scholar

Jankowski J., Ognik K., Konieczka P., Mikulski D. (2020 c). Effects of different levels of arginine and methionine in a high-lysine diet on the immune status, performance, and carcass traits of turkeys. Poultry Sci., 99: 4730–4740.10.1016/j.psj.2020.06.039759810832988507Search in Google Scholar

Jobgen W.S., Fried S.K., Fu W.J., Meininger C.I., Wu G. (2006). Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 17: 571–588.10.1016/j.jnutbio.2005.12.001Search in Google Scholar

Khajali F., Wideman R.F. (2010). Dietary arginine: metabolic, environmental, immunological and physiological interrelationships. World Poultry Sci. J., 66: 751–766.10.1017/S0043933910000711Search in Google Scholar

Khalifeh-Gholi M., Jahanian R. (2012). Immune functions as affected by dietary arginine by methionine interaction in broiler chicks. World Poultry Sci. J., 68: 1–4.Search in Google Scholar

Kidd M.T., Kerr B.J., Anthony N.B. (1997). Dietary interactions between lysine and threonine in broilers. Poultry Sci., 76: 608–614.10.1093/ps/76.4.608Search in Google Scholar

Kong S.K., Yim M.B., Stadman E.R., Chock P.B. (1996). Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide. Proc. Natl. Acad. Sc. USA, 93: 3377–3382.10.1073/pnas.93.8.3377Search in Google Scholar

Kostov K. (2019). Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: focusing on the processes of insulin secretion and signaling. Int. J. Mol. Sci., 20: 1351–13666.10.3390/ijms20061351Search in Google Scholar

Le Mignon G., Pitel F., Gilbert H., Le Bihan-Duval E., Vignoles F., Demeure O., Lagarrigue S., Simon J., Cogburn L.A., Aggrey S.E., Douaire M., Le Roy P. (2009). A comprehensive analysis of QTL for abdominal fat and breast muscle weights on chicken chromosome 5 using a multivariate approach. Anim. Gen., 40: 157–164.10.1111/j.1365-2052.2008.01817.xSearch in Google Scholar

Moore S., Stein W.H. (1954). A modified ninhydrin reagent for photometric determination of amino acids and related compounds. J. Biol. Chem., 211: 907–913.10.1016/S0021-9258(18)71178-2Search in Google Scholar

NRC: National Research Council (1994). Nutrient Requirements of Poultry. 9th ed. Washington, DC, USA: The National Academies Press.Search in Google Scholar

Oda H. (2006). Functions of sulfur-containing amino acids in lipid metabolism. J. Nutr., 136: 1666–1669.10.1093/jn/136.6.1666SSearch in Google Scholar

Ognik K., Krauze M. (2016). The potential for using enzymatic assays to assess the health of turkeys. Worlds Poultry Sci. J., 72: 535–550.10.1017/S0043933916000246Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poultry Res., 21: 259–271.10.3382/japr.2011-00366Search in Google Scholar

Ognik K., Całyniuk Z., Mikulski D., Stępniowska A., Konieczka P., Jankowski J. (2020 a). The effect of different dietary ratios of lysine, arginine, and methionine on biochemical parameters and hormone secretion in turkeys. J. Anim. Physiol. Anim. Nutr., https://doi.10.1111/jpn.13433.10.1111/jpn.1343332815585Search in Google Scholar

Ognik K., Konieczka P., Mikulski D., Jan Jankowski J. (2020 b). The effect of different dietary ratios of lysine and arginine in diets with high or low methionine levels on oxidative and epigenetic DNA damage, the gene expression of tight junction proteins and selected metabolic parameters in Clostridium perfringens-challenged turkeys. Vet. Res., 50: 1–14.10.1186/s13567-020-00776-y714034232264939Search in Google Scholar

Oso A.O., Williams G.A., Oluwatosin O.O., Bamgbose A.M., Adebayo A.O., Olowofeso O.V., Pirgozliev A.A., Adegbenjo S.O., Osho J.O., Alabi F., Li H., Liu G., Yao K., Xin W. (2017). Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest. Sci., 198: 58–64.10.1016/j.livsci.2017.02.005Search in Google Scholar

Pratt D.S., Kaplan M.M. (2000). Evaluation of abnormal liver-enzyme results in asymptomatic patients. N. Engl. J. Med., 4: 1266–1271.10.1056/NEJM200004273421707Search in Google Scholar

Rama Rao S.V., Praharaj N.K., Ramasubba Reddy V., Panda A.K. (2003). Interaction between genotype and dietary concentrations of methionine for immune function in commercial broilers. Br. Poultry Sci., 44: 104–112.10.1080/0007166031000085283Search in Google Scholar

Ruiz-Feria C.A., Kidd M.T., Wideman R.F. (2001). Plasma levels of arginine, ornithine, and urea and growth performance of broilers fed supplemental L-arginine during cool temperature exposure. Poultry Sci., 80: 358–369.10.1093/ps/80.3.358Search in Google Scholar

Scherrer U., Randin D., Vollenweider P., Nicod P. (1994). Nitric oxide release accounts for insulin’s vascular effects in humans. J. Clin. Invest., 94: 2511–2515.10.1172/JCI117621Search in Google Scholar

Steinberg H.O., Brechtel G., Johnson A., Fineberg N., Baron A.D. (1994). Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent: a novel action of insulin to increase nitric oxide release. J. Clin. Invest., 94: 1172–1179.10.1172/JCI117433Search in Google Scholar

Takahashi K., Akiba Y. (1995). Effect of methionine supplementation on lipogenesis and lipolysis in broiler chicks. Jpn. Poultry Sci., 32: 99–106.10.2141/jpsa.32.99Search in Google Scholar

Tamir H., Ratner S. (1963). Enzymes of arginine metabolism in chicks. Arch. Biochem. Biophys., 102: 249–258.10.1016/0003-9861(63)90178-4Search in Google Scholar

Tansey J.T., Sztalryd C., Hlavin E.M., Kimmel A.R., Londos C. (2004). The central role of perilipin a in lipid metabolism and adipocyte lipolysis. IUBMB Life, 56: 379–385.10.1080/15216540400009968Search in Google Scholar

Tayade C., Koti M., Mishra S.C. (2006). L-Arginine stimulates intestinal intraepithelial lymphocyte functions and immune response in chickens orally immunized with live intermediate plus strain of infectious bursal disease vaccine. Vaccine, 24: 5473–5480.10.1016/j.vaccine.2006.03.086Search in Google Scholar

Toghyani M., Tahmasebi S., Modaresi M., Sadra S.F., Ale S. (2019). Effect of arginine and threonine in ovo supplementation on immune responses and some serum biochemical attributes in broiler chickens. Ital. J. Anim. Sci., 18: 342–349.10.1080/1828051X.2018.1529545Search in Google Scholar

Uni Z., Ferket P. (2003). Enhancement of development of oviparous species by in ovo feeding. U.S. Regular Patent US 6592878, Washington, DC, US.Search in Google Scholar

van Loon L.J., Saris W.H., Verhagen H., Wagenmakers A.J. (2000). Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am. J. Clin. Nutr., 72: 96–105.10.1093/ajcn/72.1.96Search in Google Scholar

Wu G., Bazer F.W., Davis T.A., Kim S..W., Li P., Marc Rhoads J., Carey Satterfield M., Smith S.B., Spencer T.E., Yin Y. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids, 37: 153–168.10.1007/s00726-008-0210-ySearch in Google Scholar

Yang H., Ju X., Wang Z., Yang Z., Lu J., Wang W. (2016). Effects of arginine supplementation on organ development, egg quality, serum biochemical parameters, and immune status of laying hens. Braz. J. Poultry Sci., 18: 181–186.10.1590/1516-635x1801181-186Search in Google Scholar

Zampiga M., Laghi L., Petracci M., Zhu C., Meluzzi A., Dridi S., Sirri F. (2018). Effect of dietary arginine to lysine ratios on productive performance, meat quality, plasma and muscle metabolomics profile in fast-growing broiler chickens. J. Anim. Sci. Biotech., 9: 79–93.10.1186/s40104-018-0294-5Search in Google Scholar

Zduńczyk Z., Jankowski J., Kubińska M., Ognik K., Czech A., Juśkiewicz J. (2017). The effect of different dietary levels DL-methionine and DL-hydroxy analogue on antioxidant and immunologic status of young turkeys. Archiv. Anim. Nutr., 71: 347–361.10.1080/1745039X.2017.1352328Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine