Otwarty dostęp

Effect of Different Levels of Copper Nanoparticles and Copper Sulfate on Morphometric Indices, Antioxidant Status and Mineral Digestibility in the Small Intestine of Turkeys


Zacytuj

Adegbenjo A.A., Idowu O.M.O., Oso A.O., Adeyemi O.A., Aobayo R.A., Akinloye O.A., Jegede A.V., Osho S.O., Williams G.A. (2014). Effects of dietary supplementation with copper sulphate and copper proteinate on plasma trace minerals, copper residues in meat tissues, organs, excreta and tibia bone of cockerels. Slovak J. Anim. Sci., 47: 164–171.Search in Google Scholar

Aebi H. (1984). Catalase in vitro. Methods Enzymol., 105: 121–126.10.1016/S0076-6879(84)05016-3Search in Google Scholar

Anwar M.I., Awais M.M., Akhtar M., Navid M.T., Muhammad F. (2019). Nutritional and immunological effects of nano-particles in commercial poultry. World’s Pout. Sci. J., 75:262–271.10.1017/S0043933919000199Search in Google Scholar

Ajuwon O.R., Idowu O.M.O., Afolabi S.A., Kehinde B.O., Oguntola O.O., Olatunbosun K.O. (2011). The effects of dietary copper supplementation on oxidative and antioxidant systems in broiler chickens. Arch. Zootec., 60: 275–282.10.4321/S0004-05922011000200012Search in Google Scholar

Albanese A., Tang P.S., Chan W.C.W. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 14: 1–16.10.1146/annurev-bioeng-071811-150124Search in Google Scholar

Arias V.J., Koutsos E.A. (2006). Effect of copper source and level on intestinal physiology and growth of broiler chickens. Poult. Sci., 85: 999–1007.10.1093/ps/85.6.999Search in Google Scholar

Awad W.A., Ghareeb K., Abdel-Raheem S., Bohm J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci., 88: 49–55.10.3382/ps.2008-00244Search in Google Scholar

Bao Y.M., Choct M., Iji P., Bruerton A. (2007). Effect of organically complexed copper. iron. manganese. and zinc on broiler performance. mineral excretion. and accumulation in tissues. J. Appl. Poultry Res., 16: 448–455.10.1093/japr/16.3.448Search in Google Scholar

Bunglavan S.J., Dass A.K.G., Shrivastava S. (2014). Use of nanoparticles as feed additives to improve digestion and absorption in livestock. Livestock Res. Int., 2: 36–47.Search in Google Scholar

Crater J.S., Carrier R.L. (2010). Barrier properties of gastrointestinal mucus to nanoparticles transport Macromol. Biosci., 10: 1473-1483.10.1002/mabi.201000137Search in Google Scholar

Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F., Chai Z., Zhu C., Fang X., Ma, B., Wan, L. (2006). Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett., 163: 109–120.10.1016/j.toxlet.2005.10.003Search in Google Scholar

Chiou P.W.S., Chen C.L., Chen K.L., Wu C.P. (1999). Effect of high dietary copper on the morphology of gastro-intestinal tract in broiler chickens. Asian Austral. J. Anim. Sci., 12: 548–553.10.5713/ajas.1999.548Search in Google Scholar

Cholewińska E., Juśkiewicz J., Ognik K. (2018a). Comparison of the effct of dietary copper nanoparticles and one copper (II) salt on the metabolic and immune status in a rat model. J. Trace Elem. Med Biol., 48: 111–117.10.1016/j.jtemb.2018.03.01729773169Search in Google Scholar

Cholewińska E., Ognik K., Fotschki B., Zduńczyk Z., Juśkiewicz J. (2018b). Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS ONE, 13(5): e0197083.10.1371/journal.pone.0197083595154629758074Search in Google Scholar

EFSA, Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2016). Revision of the currently authorised maximum copper content in complete feed. EFSA J. 14: 4563.10.2903/j.efsa.2016.4563Search in Google Scholar

Gangadoo S., Stanley D., Hughus R., Moore R.J., Chapman J. (2016). Nanoparticles in feed: Progress and prospects in poultry research. Trends Food Sci. Tech., 58: 115–126.10.1016/j.tifs.2016.10.013Search in Google Scholar

Gonzales-Eguia A., Fu C.M., Lu F.Y., Lien T.F. (2009). Effects of nanocopper on copper availability and nutrients digestibility, growth performance and serum traits of piglets. Livest. Sci., 126: 122–129.10.1016/j.livsci.2009.06.009Search in Google Scholar

Hill E.K., Li J. (2017). Current and future prospects for nanotechnology in animal production. J Anim. Sci. Biotechnol., 8: 26. DOI: 10.1186/s40104-017-0157-5.10.1186/s40104-017-0157-5535105428316783Search in Google Scholar

Hillery A.M., Jani P.U., Florence A.T. (1994). Comparative, quantitative study of lymphoid and nonlymphoid uptake of 60 nm polystyrene particles. J. Drug. Target., 2: 151–156.10.3109/10611869409015904Search in Google Scholar

Jachak A., Lai S.K., Hida K., Suk J.S., Markovic N., Biswal S., Breysse P.N., Hanes J. (2012). Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus. Nanotoxicology 6: 614–622.10.3109/17435390.2011.598244Search in Google Scholar

Jani P., Halbert G.W., Langridge J., Florence A.T. (1990). Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J. Pharm. Pharmacol., 42: 821–826.10.1111/j.2042-7158.1990.tb07033.xSearch in Google Scholar

Jankowski J., Kozłowski K., Ognik K., Zduńczyk Z., Otowski K., Sawosz E., Juśkiewicz J. (2019). Redox and immunological status of turkeys fed diets with different levels and sources of copper. Ann. Anim. Sci., 19: 215–227.10.2478/aoas-2018-0054Search in Google Scholar

Jegede A.V., Oduguwa O.O., Oso A.O., Fafiolu A.O., Idowu O.M.O., Nollet L. (2012). Growth performance, blood characteristics and plasma lipids of growing pullet fed dietary concentrations of organic and inorganic copper sources. Livest. Sci., 145: 298–302.10.1016/j.livsci.2012.02.011Search in Google Scholar

Johnson E.L., Nicholoson J.L., Doerr J.A. (1985). Effect of dietary copper on litter microbial population and broiler performance. Br. Poult. Sci., 26: 171–177.10.1080/00071668508416801Search in Google Scholar

Jóźwik A., Marchewka J., Strzałkowska N. Horbńanczuk J.O., Szumacher-Strabel M., Cieślak A., Lipińska-Palka P., Józefiak D., Kamińska A., Atanasov A.G. (2018). The effect of different levels of Cu, Zn and Mn nanoparticles in hen turkey diet on the activity of aminopeptidases. Molecules 23, 1150; doi:10.3390/molecules23051150.10.3390/molecules23051150610058729751626Search in Google Scholar

Karimi A., Sadeghi G., Vaziry A. (2011). The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J. Appl. Poult. Res., 20: 203–209.10.3382/japr.2010-00290Search in Google Scholar

King J.C., Shames D.M., Woodhouse L.R. (2000). Zinc homeostasis in humans. J. Nutr., 130: 1360S–1366S.10.1093/jn/130.5.1360SSearch in Google Scholar

Lim H. S., Paik I. K. (2006). Effects of dietary supplementation of copper chelates in the form of methionine, chitosan and yeast in laying hens, Asian-Aust. J. Anim. Sci., 19: 1174–1178.10.5713/ajas.2006.1174Search in Google Scholar

Linder M.C., Hazegh-Azam M. (1996). Copper biochemistry and molecular biology. Am. J. Clin. Nutr., 63: 797–811.Search in Google Scholar

Mabe I., Rapp C., Bain M.M., Nys Y. (2003). Supplementation of a corn-soybean meal diet with manganese, copper, and zinc from organic or inorganic sources improves eggshell quality in aged laying hens. Poultry Sci., 82: 1902–1913.10.1093/ps/82.12.1903Search in Google Scholar

Majewski M., Ognik K., Zduńczyk P., Juśkiewicz J. (2017). Effect of dietary copper nanoparticles versus one copper (II) salt: analysis of vasoreactivity in a rat model. Pharmacol. Rep., 69: 1282–1268.10.1016/j.pharep.2017.06.001Search in Google Scholar

Makarski B., Gortat M., Lechowski J., Żukiewicz-Sobczak W., Sobczak P., Zawiślak K. (2014). Impact of copper (Cu) at the dose of 50 mg on haematological and biochemical blood parameters in turkeys, and level of Cu accumulation in the selected tissues as a source of information on product safety for consumers. Ann. Agric. Environ. Med., 21: 567–570.10.5604/12321966.1120603Search in Google Scholar

McGill S., Smyth H.D.C. (2010). Disruption of the mucus barrier by topically applied exogenous particles. Mol. Pharmaceutics 7: 2280-2288.10.1021/mp100242rSearch in Google Scholar

O’Connor J.M. (2001). Trace elements and DNA damage. Biochem. Soc. Trans., 39: 354–357.10.1042/bst0290354Search in Google Scholar

Ognik K., Wertelecki T. (2012). Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poultry Res., 2: 259–271.10.3382/japr.2011-00366Search in Google Scholar

Ognik K, Stępniowska A, Cholewińska E, Kozłowski K (2016). The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium. Poult. Sci., 95: 2045-2051.10.3382/ps/pew200Search in Google Scholar

Ognik K., Sembratowicz I., Cholewińska E., Jankowski J., Kozłowski K., Juśkiewicz J., Zduńczyk Z. (2018). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of blood. Anim. Sci. J., 89: 579–588.10.1111/asj.12956Search in Google Scholar

Ognik K., Cholewińska E., Juśkiewicz J., Zduńczyk Z., Tutaj K., Szlązak R. (2019). The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr., 103: 675–686.10.1111/jpn.13025Search in Google Scholar

Ognik K., Cholewińska E., Stępniowska A., Drażbo A., Kozłowski K., Jankowski J. (2019). The effect of administration of copper nanoparticles in drinking water on redox reactions in the liver and breast muscle of broiler chickens. Ann. Anim. Sci., 19: 663–677.10.2478/aoas-2019-0009Search in Google Scholar

Omaye S.T., Tumbull J.D., Sauberlich H.E. (1979). Selected methods for determination of ascorbic acid in animal cells, tissues and fluids. Meth. Enzymol., 62: 3–11.10.1016/0076-6879(79)62181-XSearch in Google Scholar

Otowski K., Ognik K., Kozłowski K. (2019). Growth rate, metabolic parameters and carcass quality in turkeys fed diets with different inclusion levels and sources of supplemental copper. J. Anim. Feed Sci., 28: 272–281.10.22358/jafs/112186/2019Search in Google Scholar

Pekel A., Alp M. (2011). Effects of different dietary copper sources on laying hen performance and egg yolk cholesterol. J. Appl. Poult. Res., 20: 506–513.10.3382/japr.2010-00313Search in Google Scholar

Samanta B., Ghosh P.R., Biswas A., Das S.K. (2011). The effects of copper supplementation on the performance and hematological parameters of broiler chickens. Asian-Aust. J. Anim. Sci., 24: 1001–1006.10.5713/ajas.2011.10394Search in Google Scholar

Sawosz E., Łukasiewicz M., Łozicki A., Sosnowska M., Jaworski S., Niemiec J., Scott A., Jankowski J., Józefiak D., Chwalibog A. (2018). Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archiv. Animal Nutr. https://doi.org/10.1080/1745039X.2018.150514610.1080/1745039X.2018.150514630183391Search in Google Scholar

Schoendorfer N., Davies P.S.W. (2012). Micronutrients interrelationships: synergism and antagonism. In: Micronutrients. Betencourt A.I. Gaitan H.F. (eds), pp. 159–179.Search in Google Scholar

Scott A., Vadalasetty K.P., Chwalibog A., Sawosz E. Copper nanoparticles as an alternative feed additive in poultry diet: a review. Nanotechnol Rev 2018; 7(1): 69–93,10.1515/ntrev-2017-0159Search in Google Scholar

Smulikowska S., Rutkowski A. (2005). Recommended Allowances and Nutritive Value of Feedstuffs - Poultry Feeding Standards (in Polish). 5th ed. Smulikowska, S., Rutkowski, A., Eds. The Kielanowski Institute of Animal Physiology and Nutrition, Jablonna, PAS Polish.Search in Google Scholar

Sukalski K.A., LaBerge T.P., Johnson W.T. (1997). In vivo oxidative modification of erythrocyte membrane proteins in copper deficiency. Free Radic. Biol. Med., 22: 835–842.10.1016/S0891-5849(96)00430-3Search in Google Scholar

Yang F., Zhao L., Peng X., Deng J.L., Cui H.M. (2009). Effect of dietary high copper on the bursa of Fabricius in ducklings. Chin. J. Vet. Sci., 29: 354–359.Search in Google Scholar

eISSN:
2300-8733
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine