Otwarty dostęp

Experimental and Numerical Investigations and Optimisation of Grain-Oriented Silicon Steel Mechanical Cutting Process


Zacytuj

1. Siebert R, Schneider J, Beyer E. Laser cutting and mechanical cutting of electrical steels and its effect on the magnetic properties, Mag, IEEE Transs on. 2014; 50: 1–4. Available from: https://ieeexplore.ieee.org/document/679804510.1109/TMAG.2013.2285256 Search in Google Scholar

2. Slota J, Kaščák L, Kut S. FEM Modeling of shear cutting of electrical steel sheets under various technological conditions. Acta Mech Slo2018; 22 (4): 24–30. Available from: https://www.actamechanica.sk/pdfs/ams/2018/04/04.pdf10.21496/ams.2018.031 Search in Google Scholar

3. Ghadbeigi H, Al-Rubaye A, Robinson F.C.J, et al., Blanking induced damage in thin 3.2% silicon steel sheets. Prod Eng. 2020; 14: 53–64.10.1007/s11740-019-00931-1 Search in Google Scholar

4. Weiss H. A, Leuning N, Steentjes S, et al., Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets. Jl of Magn and Mag Mat 2017; 421: 250–259. Available from: https://www.sciencedirect.com/science/article/abs/pii/S030488531631294X10.1016/j.jmmm.2016.08.002 Search in Google Scholar

5. Zhao Z, Song R, Wang Y, Wang Y, Hu Ch, Zhang Y. Slanted blades optimizing grain texture and work hardening of non-oriented electrical steel in stress coverages during shearing and blanking processes. Steel Res Int 2021; 92, 2100233, 1-7.10.1002/srin.202100233 Search in Google Scholar

6. Paltanea G, Manescu V, Nemoianu I.V, Gavrila H, Andrei P.C. Influence of cutting technologies on the magnetic anisotropy of grain oriented electrical steel. In 2017 Electric Vehicles Int Conf, EV 2017, volume 2017-Janua, pages 1–4, 2017.10.1109/EV.2017.8242088 Search in Google Scholar

7. Hofmann M, Naumoski H, Herr U, Herzog H.-G. Magnetic properties of electrical steel sheets in respect of cutting: Micromagnetic analysis and macromagnetic modeling. IEEE Trans on Mag2016; 52, 1–14. Available from: https://ieeexplore.ieee.org/document/728682310.1109/TMAG.2015.2484280 Search in Google Scholar

8. Moses A.J. Energy efficient electrical steels: magnetic performance prediction and optimization. Scri Mat 2012; 67 (6), 560–565. Available from: https://www.sciencedirect.com/science/article/abs/pii/S135964621200129710.1016/j.scriptamat.2012.02.027 Search in Google Scholar

9. Naumoski H, Riedmüller B, Minkow A. Herr U. Investigation of the influence of different cutting procedures on the global and local magnetic properties of non-oriented electrical steel. J of Magn and Mag Mat 2015; 392, 126–133. Available from: https://www.sciencedirect.com/science/article/abs/pii/S030488531530155410.1016/j.jmmm.2015.05.031 Search in Google Scholar

10. Lewis N, Anderson P, Hall J, Gao Y. Power loss models in punched non-oriented electrical steel rings. IEEE Trans on Mag. 2016; 52(5), 1–4. Available from: https://ieeexplore.ieee.org/document/742892810.1109/TMAG.2016.2530304 Search in Google Scholar

11. Kuo S.K, Lee W.C, Lin S.Y, Lu C.Y. The influence of cutting edge deformations on magnetic performance degradation of electrical steel. 2014 17th Int Conf on Electrl Mach and Systems (ICEMS), 2014; 3041-3046.10.1109/ICEMS.2014.7014017 Search in Google Scholar

12. LoBue M. Sasso C. Basso V. Fiorillo F. Bertotti G. Power losses and magnetization process in Fe–Si non-oriented steels under tensile and compressive stress. J of Magn and Mag Mat 2000; 215–216, 124–126. Available from: https://www.sciencedirect.com/science/article/abs/pii/S030488530000092510.1016/S0304-8853(00)00092-5 Search in Google Scholar

13. Boehm L, Hartmann C, Gilch I, Stoecker A, Kawalla R, Wei X, Hirt G, Heller M, Korte-Kerzel S, Leuning N, et al. Grain size influence on the magnetic property deterioration of blanked non-oriented electrical steels. Materials 2021, 14, 7055. Available from: https://www.mdpi.com/1996-1944/14/22/705510.3390/ma14227055861868534832456 Search in Google Scholar

14. Wang X, Wang Z, Cui R, Li Sh. Influence of blanking process on the magnetic properties of non-oriented electrical steel lamination. J of Shanghai Jiao Tong University. 2019; 53(9), 1115-1121. Search in Google Scholar

15. Wang N, Golovashchenko S.F. Mechanism of fracture of aluminum blanks subjected to stretching along the sheared edge. J of Mat Proc Tech 2016; 233, 142–160. Available from:https://www.sciencedirect.com/science/article/abs/pii/S092401361630055310.1016/j.jmatprotec.2016.02.022 Search in Google Scholar

16. Cao H, Hao L, Yi J, Zhang X, Luo Z, Chen Sh, et al., The influence of punching process on residual stress and magnetic domain structure of non-oriented silicon steel. Jof Magn and Mag Mat 2016; 406, 42–47. Available from: https://www.sciencedirect.com/science/article/abs/pii/S030488531530958610.1016/j.jmmm.2015.12.098 Search in Google Scholar

17. Bayraktar Ş, Turgut Y. Effects of different cutting methods for electrical steel sheets on performance of induction motors. Procof the Institution of Mech Eng, Part B: J of Eng Man 2018; 232 (7), 1287–1294.10.1177/0954405416666899 Search in Google Scholar

18. Dems M, Komeza K, Kubiak W, Szulakowski J. Impact of core sheet cutting method on parameters of induction motors. Energies. 2020; 13 (8), 1960. Available from: https://www.mdpi.com/1996-1073/13/8/1960 Search in Google Scholar

19. Vandenbossche L, Jacobs S, Henrotte F, Hameyer K. Impact of cut edges in magnetization curves and iron losses in e-machines for automotive traction, in Proc of 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symp & Exhibition, EVS, (Schenzhen, China), November 2010.10.3390/wevj4030587 Search in Google Scholar

20. Hirsch M, Demmel P, Golle R, Hoffmann H. Light metal in high-speed stamping tools, Key Eng Mat2001; 473, 259–266.10.4028/www.scientific.net/KEM.473.259 Search in Google Scholar

21. Harstick H.M.S, Ritter M, Plath A, Riehemann W. EBSD Investigations on cutting edges of non-oriented electrical steel. Met, Micr and Analysis. 2014; 3 (4), 244–251.10.1007/s13632-014-0148-2 Search in Google Scholar

22. Kałduński P, Kukiełka L. The numerical analysis of the influence of the blankholder force and the friction coefficient on the value of the drawing force, PAMM. 2007; 7 (1), 4010045-4010046. Available from:https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.20070105910.1002/pamm.200701059 Search in Google Scholar

23. Kukiełka L. Podstawy Badań Inżynierskich; Politechnika Koszalińska: Koszalin, Poland; PWN: Warszawa, Poland, 2002. (In Polish) Search in Google Scholar

24. Bohdal L. Application of a SPH coupled FEM method for simulation of trimming of aluminum autobody sheet. Acta Mech et Aut. 2016; 10(1), 56–61.10.1515/ama-2016-0010 Search in Google Scholar

25. Chodor J, Kukielka L. Using nonlinear contact mechanics in process of tool edge movement on deformable body to analysis of cutting and sliding burnishing processes, App Mech and Mat 2014; 474, 339–344.10.4028/www.scientific.net/AMM.474.339 Search in Google Scholar

26. Johnson G.R, Cook W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. 7th International Symposium on Ballistics, The Hague, The Netherlands. 1983; 541–548. Search in Google Scholar

27. Bohdal Ł. Teoretyczne i doświadczalne podstawy optymalizacji procesów cięcia mechanicznego stopów metali lekkich i stali elektrotechnicznych. Monografia Wydziału Mechanicznego nr 344, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin. 2018. ISSN 0239-7129, ISBN 978-83-7365-7481-5 (In polish). Search in Google Scholar

28. Alatawneh A, Saleem A, Rahman T, Lowther D.A, Chromik R. Modelling and analysis of the effects of cutting of core laminations in electric machines, IET Electric Power Appl 2020; 14 (12), 2355–2361. Available from: https://ietresearch.onlinelibrary.wiley.com/doi/full/10.1049/iet-epa.2020.021810.1049/iet-epa.2020.0218 Search in Google Scholar

29. Bratus V, Kosel F, Kovac M, Hidria. Determination of optimal cutting edge geometry on a stamped orthotropic circular electrical steel sheet, J of Mat Proc Tech 2005; 210 (2), 396-407. Available from: https://www.sciencedirect.com/science/article/abs/pii/S092401360900361610.1016/j.jmatprotec.2009.09.029 Search in Google Scholar

30. Demir A, Ocak O, Ulu Y. Impact of lamination processing methods on performance of permanent magnet synchronous motors. In: Int conf on electr mach (ICEM), Berlin, 2–5 September 2014, 1218–1223.10.1109/ICELMACH.2014.6960337 Search in Google Scholar

31. Hilditch T.B, Hodgson P.D. Development of the sheared edge in the trimming of steel and light metal sheet, Part 1 - Experimental observations. J of Mat Proc Tech. 2005; 169, 184–191. Available from: https://www.sciencedirect.com/science/article/abs/pii/S092401360500462010.1016/j.jmatprotec.2005.02.266 Search in Google Scholar

32. Hilditch T.B, Hodgson P.D. Development of the sheared edge in the trimming of steel and light metal sheet, Part 2 - Mechanisms and modeling. J of Mat Proc Tech 2005; 169, 192–198. Available from: https://www.sciencedirect.com/science/article/abs/pii/S092401360500463210.1016/j.jmatprotec.2005.02.267 Search in Google Scholar

33. Klimczyk PK, Anderson P, Moses A. Influence of cutting techniques on magnetostriction under stress of grain oriented electrical steel. IEEE Trans on Mag 2012; 48, 1417–1420. Available from: https://ieeexplore.ieee.org/document/617234110.1109/TMAG.2011.2174626 Search in Google Scholar

34. Kukielka L. Nonlinear modeling for elasto/visco – plastic contact problem in technological processes, International Scientific IFNA – ANS Journal, Problems of non – linear Analysis in Engineering Systems (2) (2004) 39-53. Search in Google Scholar

35. Kurosaki Y, Mogi H, Fujii H. Importance of punching and workability in non-oriented electrical steel sheets. J of Magn and Mag Mat 2008; 320, 2474–2480. Available from: https://www.sciencedirect.com/science/article/abs/pii/S030488530800387910.1016/j.jmmm.2008.04.073 Search in Google Scholar

36. Manescu V, Paltanea G, Gavrila H. Some important effects of the water jet and laser cutting methods on the magnetic properties of the non-oriented silicon iron sheets. In: 9th intsymp on adv topics in electr eng (ATEE), Bucharest, Romania, 7–9 May 2015, pp.7–9.10.1109/ATEE.2015.7133856 Search in Google Scholar

37. Pulnikov A, Baudouin P, Melkebeek J. Induced stresses due to the mechanical cutting of non-oriented electrical steels. J of Magn and Mag Materials. 2003; 254–255, 355–357. Available from: https://www.sciencedirect.com/science/article/abs/pii/S030488530200853310.1016/S0304-8853(02)00853-3 Search in Google Scholar