Otwarty dostęp

Enzymatic Hydrogen Bioproduction. Structure, Function And Application Of Hydrogenases


Zacytuj

Abou Hamdan A., Dementin S.: et al. O2-independent formation of the inactive states of NiFe hydrogenase. Nat. Chem. Biol. 9, 15–17 (2013)Abou HamdanA.DementinS.O2-independent formation of the inactive states of NiFe hydrogenaseNat. Chem. Biol.91517201310.1038/nchembio.111023143415Search in Google Scholar

Angenent L.T., Karim K., Al-Dahhan M.H., Wrenn B.A., Domíguez-Espinosa R.: Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22, 477–485 (2004)AngenentL.T.KarimK.Al-DahhanM.H.WrennB.A.Domíguez-EspinosaR.Production of bioenergy and biochemicals from industrial and agricultural wastewaterTrends Biotechnol.22477485200410.1016/j.tibtech.2004.07.00115331229Search in Google Scholar

Arnon D.I., Losada M., Nozaki M., Tagawa K.: Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesis. Nature, 190, 601–606 (1961)ArnonD.I.LosadaM.NozakiM.TagawaK.Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesisNature190601606196110.1038/190601a013684408Search in Google Scholar

Balat M.: Production of hydrogen via biological processes. Energ. Source Part A, 20, 1802–1812 (2009)BalatM.Production of hydrogen via biological processesEnerg. Source Part A2018021812200910.1080/15567030802463109Search in Google Scholar

Balat M.: Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrogen. Energ. 33, 4013–4029 (2008)BalatM.Potential importance of hydrogen as a future solution to environmental and transportation problemsInt. J. Hydrogen. Energ.3340134029200810.1016/j.ijhydene.2008.05.047Search in Google Scholar

Ballantine S.P., Boxer D.H.: Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12. J. Bacteriol. 163, 454–459 (1985)BallantineS.P.BoxerD.H.Nickel-containing hydrogenase isoenzymes from anaerobically grown Escherichia coli K-12J. Bacteriol.163454459198510.1128/jb.163.2.454-459.19852191433894325Search in Google Scholar

Barbosa T.M., Baltazar C.S.A., Cruz D.R., Lousa D., Soares C.M.: Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenases. Sci. Rep. 10, 10540 (2020)BarbosaT.M.BaltazarC.S.A.CruzD.R.LousaD.SoaresC.M.Studying O2 pathways in [NiFe]- and [NiFeSe]-hydrogenasesSci. Rep.1010540202010.1038/s41598-020-67494-5732440532601316Search in Google Scholar

Brazzolotto X., Rubach J.K., Gaillard J., Gambarelli S., Atta M., Fontecave M.: The [Fe-Fe]-Hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an Iron-Sulfur Cluster. J. Biol. Chem. 281, 769–774 (2006)BrazzolottoX.RubachJ.K.GaillardJ.GambarelliS.AttaM.FontecaveM.The [Fe-Fe]-Hydrogenase maturation protein HydF from Thermotoga maritima is a GTPase with an Iron-Sulfur ClusterJ. Biol. Chem.281769774200610.1074/jbc.M51031020016278209Search in Google Scholar

Bruschi M., Greco C., Kaukonen M., Fantucci P., Ryde U., De Gioia L.: Influence of the [2Fe]H subcluster environment on the properties of key intermediates in the catalytic cycle of [FeFe] hydrogenases: hints for the rational design of synthetic catalysts. Angew. Chem. Int. Edit. 48, 3503–3506 (2009)BruschiM.GrecoC.KaukonenM.FantucciP.RydeU.De GioiaL.Influence of the [2Fe]H subcluster environment on the properties of key intermediates in the catalytic cycle of [FeFe] hydrogenases: hints for the rational design of synthetic catalystsAngew. Chem. Int. Edit.4835033506200910.1002/anie.20090049419350595Search in Google Scholar

Calusinska M., Happe T., Joris B., Wilmotte A.: The surprising diversity of clostridial hydrogenases: A comparative genomic perspective. Microbiology, 156, 1575–1588 (2010)CalusinskaM.HappeT.JorisB.WilmotteA.The surprising diversity of clostridial hydrogenases: A comparative genomic perspectiveMicrobiology15615751588201010.1099/mic.0.032771-020395274Search in Google Scholar

Cameron A.G.W.: Abundances of the elements in the solar system. Space Sci. Rev. 15, 121–146 (1973)CameronA.G.W.Abundances of the elements in the solar systemSpace Sci. Rev.15121146197310.1007/BF00172440Search in Google Scholar

Cammack R.: Hydrogenase sophistication. Nature, 397, 214–215 (1999)CammackR.Hydrogenase sophisticationNature397214215199910.1038/166019930693Search in Google Scholar

Constant P., Hallenbeck P.C.: Hydrogenase (w) Biohydrogen (Second Edition), red. A. Pandey, S. Mohan, J-S. Chang, P.C. Hallenbeck, C. Larroche, Elsevier, 2019, s. 49–78ConstantP.HallenbeckP.C.Hydrogenase (w) Biohydrogen (Second Edition), red. PandeyA.MohanS.ChangJ-S.HallenbeckP.C.LarrocheC.Elsevier2019, s. 497810.1016/B978-0-444-64203-5.00003-4Search in Google Scholar

Debabrata D., Namita K., Nejat Veziroğlu T.: Recent developments in biological hydrogen production processes. Chem. Ind. Chem. Eng. Q. 14, 57–67 (2008)DebabrataD.NamitaK.Nejat VeziroğluT.Recent developments in biological hydrogen production processesChem. Ind. Chem. Eng. Q.145767200810.2298/CICEQ0802057DSearch in Google Scholar

Dementin S., Burlat B., Fourmond V., Leroux F., Liebgott P-P., Hamdan A.A., Léger C., Rousset M., Guigliarelli B., Bertrand P.: Rates of intra- and intermolecular electron transfers in hydrogenase deduced from steady-state sctivity measurements. J. Am. Chem. Soc. 133, 10211–10221 (2011)DementinS.BurlatB.FourmondV.LerouxF.LiebgottP-P.HamdanA.A.LégerC.RoussetM.GuigliarelliB.BertrandP.Rates of intra- and intermolecular electron transfers in hydrogenase deduced from steady-state sctivity measurementsJ. Am. Chem. Soc.1331021110221201110.1021/ja202615a21615141Search in Google Scholar

Edwards J.K., Solsona B., Ntainjua E.N., Carley AF., Herzing A.A., Kiely C.J., Hutchings G.J.: Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science, 323, 1037–1041 (2009)EdwardsJ.K.SolsonaB.NtainjuaE.N.CarleyAF.HerzingA.A.KielyC.J.HutchingsG.J.Switching off hydrogen peroxide hydrogenation in the direct synthesis processScience32310371041200910.1126/science.116898019229032Search in Google Scholar

English C.M., Eckert C., Brown K., Seibert M., King P.W.: Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 production. Dalton Trans. 45, 9970–9978 (2009)EnglishC.M.EckertC.BrownK.SeibertM.KingP.W.Recombinant and in vitro expression systems for hydrogenases: new frontiers in basic and applied studies for biological and synthetic H2 productionDalton Trans.4599709978200910.1039/b913426n19904422Search in Google Scholar

Fontecilla-Camps J.C., Volbeda A., Cavazza C., Nicolet Y.: Structure/Function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem. Rev. 107, 4273–4303 (2007)Fontecilla-CampsJ.C.VolbedaA.CavazzaC.NicoletY.Structure/Function relationships of [NiFe]- and [FeFe]-hydrogenasesChem. Rev.10742734303200710.1021/cr050195z17850165Search in Google Scholar

Frielingsdorf S., Schubert T., Pohlmann A., Lenz O., Friedrich B.: A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16. Biochemistry-US, 50, 10836–10843 (2011)FrielingsdorfS.SchubertT.PohlmannA.LenzO.FriedrichB.A trimeric supercomplex of the oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Ralstonia eutropha H16Biochemistry-US501083610843201110.1021/bi201594m22097922Search in Google Scholar

Fritsch J., Lenz O., Friedrich B.: Structure, function and biosynthesis of O2-tolerant hydrogenases. Nat. Rev. Microb. 11, 106–114 (2013)FritschJ.LenzO.FriedrichB.Structure, function and biosynthesis of O2-tolerant hydrogenasesNat. Rev. Microb.11106114201310.1038/nrmicro294023321533Search in Google Scholar

Fritsch J., Scheerer P., Frielingsdorf S., Kroschinsky S., Friedrich B., Lenz O., Spahn C.M.T.: The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre. Nature, 479, 249–252 (2011)FritschJ.ScheererP.FrielingsdorfS.KroschinskyS.FriedrichB.LenzO.SpahnC.M.T.The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centreNature479249252201110.1038/nature10505Search in Google Scholar

Goris T., Lenz O.: et al. A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nat. Chem. Biol. 7, 310–318 (2011)GorisT.LenzO.A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenaseNat. Chem. Biol.7310318201110.1038/nchembio.555Search in Google Scholar

Greening C., Biswas A., Carere C.R., Jackson C.J., Taylor M.C., Stott M.B., Cook G.M., Morales S.E.: Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 10, 761–777 (2016)GreeningC.BiswasA.CarereC.R.JacksonC.J.TaylorM.C.StottM.B.CookG.M.MoralesS.E.Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survivalISME J.10761777201610.1038/ismej.2015.153Search in Google Scholar

Guo Y., Cramer S.P.: et al. Characterization of the Fe site in iron-sulfur-cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg. Chem. 47, 3969–3977 (2008)GuoY.CramerS.P.Characterization of the Fe site in iron-sulfur-cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS)Inorg. Chem.4739693977200810.1021/ic701251jSearch in Google Scholar

Hambourger M., Gervaldo M., Svedruzic D., King P.W., Gus D., Ghirardi M., Moore A.L., Moore T.A.: [FeFe]-Hydrogenase-Catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am. Chem. Soc. 130, 2015–2022 (2008)HambourgerM.GervaldoM.SvedruzicD.KingP.W.GusD.GhirardiM.MooreA.L.MooreT.A.[FeFe]-Hydrogenase-Catalyzed H2 production in a photoelectrochemical biofuel cellJ. Am. Chem. Soc.13020152022200810.1021/ja077691kSearch in Google Scholar

Happe T., Hemschemeier A., Winkler M., Kaminski A.: Hydrogenases in green algae: do they save the algae’s life and solve our energy problems? Trends Plant Sci. 7, 246–250 (2002)HappeT.HemschemeierA.WinklerM.KaminskiA.Hydrogenases in green algae: do they save the algae’s life and solve our energy problems?Trends Plant Sci.7246250200210.1016/S1360-1385(02)02274-4Search in Google Scholar

Hidese R., Ataka K., Bill E., Shima S.: CuI and H2O2 Inactivate and FeII inhibits [Fe]-hydrogenase at very low concentrations. ChemBioChem. 16, 1861–1865 (2015)HideseR.AtakaK.BillE.ShimaS.CuI and H2O2 Inactivate and FeII inhibits [Fe]-hydrogenase at very low concentrationsChemBioChem.1618611865201510.1002/cbic.201500318Search in Google Scholar

Higuchi Y., Yagi T., Yasuoka N.: Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure, 5, 1671–1680 (1997)HiguchiY.YagiT.YasuokaN.Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysisStructure516711680199710.1016/S0969-2126(97)00313-4Search in Google Scholar

Hiromoto T., Warkentin E., Moll J., Ermler U., Shima S.: The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activation. Angew. Chem. Int. Edit. 48, 6457–6460 (2009)HiromotoT.WarkentinE.MollJ.ErmlerU.ShimaS.The crystal structure of an [Fe]-hydrogenase-substrate complex reveals the framework for H2 activationAngew. Chem. Int. Edit.4864576460200910.1002/anie.20090269519623593Search in Google Scholar

Huang G., Wagner T., Ermler U., Bill E., Ataka K., Shima S.: Dioxygen sensitivity of [Fe]-hydrogenase in the presence of reducing substrates. Angew. Chem. Int. Edit. 57, 4917–4920 (2018)HuangG.WagnerT.ErmlerU.BillE.AtakaK.ShimaS.Dioxygen sensitivity of [Fe]-hydrogenase in the presence of reducing substratesAngew. Chem. Int. Edit.5749174920201810.1002/anie.20171229329462510Search in Google Scholar

Ihara M., Okura I.: et al. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I. Photochem. Photobiol. 82, 676–682 (2006)IharaM.OkuraI.Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem IPhotochem. Photobiol.82676682200610.1562/2006-01-16-RA-77816542111Search in Google Scholar

Kalms J., Scheerer P.: et al. Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenase. PNAS, 115, E2229–E2237 (2018)KalmsJ.ScheererP.Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenasePNAS115E2229E2237201810.1073/pnas.1712267115587799129463722Search in Google Scholar

Kanai T., Matsuoka R., Beppu H., Nakajima A., Okada Y., Atomi H., Imanaka T.: Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic Archaeon Thermococcus kodakarensis. J. Bacteriol. 193, 3109–3116 (2011)KanaiT.MatsuokaR.BeppuH.NakajimaA.OkadaY.AtomiH.ImanakaT.Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic Archaeon Thermococcus kodakarensisJ. Bacteriol.19331093116201110.1128/JB.01072-10313321421515783Search in Google Scholar

Karyakin A.A., Morozov S.V., Karyakina E.E., Zorin N.A., Perelygin V.V., Cosnier S.: Hydrogenase electrodes for fuel cells. Biochem. Soc. T. 33, 73–75 (2005)KaryakinA.A.MorozovS.V.KaryakinaE.E.ZorinN.A.PerelyginV.V.CosnierS.Hydrogenase electrodes for fuel cellsBiochem. Soc. T.337375200510.1042/BST033007315667269Search in Google Scholar

Kim D-H., Kim M-S.: Hydrogenases for biological hydrogen production. Bioresource Technol. 102, 8423–84231 (2011)KimD-H.KimM-S.Hydrogenases for biological hydrogen productionBioresource Technol.102842384231201110.1016/j.biortech.2011.02.11321435869Search in Google Scholar

King P.W., Posewitz M.C., Ghirardi M.L., Seibert M.: Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic system. J. Bacteriol. 188, 2163–2172 (2006)KingP.W.PosewitzM.C.GhirardiM.L.SeibertM.Functional studies of [FeFe] hydrogenase maturation in an Escherichia coli biosynthetic systemJ. Bacteriol.18821632172200610.1128/JB.188.6.2163-2172.2006142812916513746Search in Google Scholar

Knörzer P., Silakov A., Foster C.E., Armstrong F.A., Lubitz W., Happe T.: Importance of the protein framework for catalytic activity of [FeFe]-hydrogenases. J. Biol. Chem. 287, 1489–1499 (2012)KnörzerP.SilakovA.FosterC.E.ArmstrongF.A.LubitzW.HappeT.Importance of the protein framework for catalytic activity of [FeFe]-hydrogenasesJ. Biol. Chem.28714891499201210.1074/jbc.M111.305797325690622110126Search in Google Scholar

Krassen H., Schwarze A., Friedrich B., Ataka K., Lenz O., Heberle J.: Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenase. ACS Nano, 3, 4055–4061 (2009)KrassenH.SchwarzeA.FriedrichB.AtakaK.LenzO.HeberleJ.Photosynthetic hydrogen production by a hybrid complex of photosystem I and [NiFe]-hydrogenaseACS Nano340554061200910.1021/nn900748j19947646Search in Google Scholar

Kruse S., Goris T., Wolf M., Wei X., Diekert G.: The NiFe hydrogenases of the tetrachloroethene-respiring Epsilonproteobacterium Sulfurospirillum multivorans: biochemical studies and transcription analysis. Front. Microbiol. 8, e444 (2017)KruseS.GorisT.WolfM.WeiX.DiekertG.The NiFe hydrogenases of the tetrachloroethene-respiring Epsilonproteobacterium Sulfurospirillum multivorans: biochemical studies and transcription analysisFront. Microbiol8e444201710.3389/fmicb.2017.00444535762028373866Search in Google Scholar

Kubas G.J.: Fundamentals of H2binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem. Rev. 107, 4152–4205 (2007)KubasG.J.Fundamentals of H2binding and reactivity on transition metals underlying hydrogenase function and H2 production and storageChem. Rev.10741524205200710.1021/cr050197j17927158Search in Google Scholar

Kuchenreuther J.M., George S.J.: et al. The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-cluster. Science, 343, 424–427 (2014)KuchenreutherJ.M.GeorgeS.J.The HydG enzyme generates an Fe(CO)2(CN) synthon in assembly of the FeFe hydrogenase H-clusterScience343424427201410.1126/science.1246572451403124458644Search in Google Scholar

Lamle S.E., Albracht S.P.J., Armstrong F.A.: Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: Insights into the puzzling difference between unready and ready oxidized inactive states. J. Am. Chem. Soc. 126, 14899–14909 (2004)LamleS.E.AlbrachtS.P.J.ArmstrongF.A.Electrochemical potential-step investigations of the aerobic interconversions of [NiFe]-hydrogenase from Allochromatium vinosum: Insights into the puzzling difference between unready and ready oxidized inactive statesJ. Am. Chem. Soc.1261489914909200410.1021/ja047939v15535717Search in Google Scholar

Liu Z-P., Hu P.: Mechanism of H2 metabolism on Fe-only hydrogenases. J. Chem. Phys. 117, 8177–8180 (2002)LiuZ-P.HuP.Mechanism of H2 metabolism on Fe-only hydrogenasesJ. Chem. Phys.11781778180200210.1063/1.1519252Search in Google Scholar

Lojou E.: Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces. Electrochim. Acta, 56, 10385–10397 (2011)LojouE.Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfacesElectrochim. Acta561038510397201110.1016/j.electacta.2011.03.002Search in Google Scholar

Lorent Ch., Katz S., Duan J., Kulka C.J., Caserta G.: et al. Shedding light on proton and electron dynamics in [FeFe] hydrogenases. J. Am. Chem. Soc. 142, 5493–5497 (2020)LorentCh.KatzS.DuanJ.KulkaC.J.CasertaG.Shedding light on proton and electron dynamics in [FeFe] hydrogenasesJ. Am. Chem. Soc.14254935497202010.1021/jacs.9b1307532125830Search in Google Scholar

Lubitz W., Ogata H., Rüdiger O., Reijerse E.: Hydrogenases. Chem. Rev. 114, 4081–4148 (2014)LubitzW.OgataH.RüdigerO.ReijerseE.HydrogenasesChem. Rev.11440814148201410.1021/cr400581424655035Search in Google Scholar

Lubner C.E., Knörzer P., Silva P.J.N., Vincent K.A., Happe T., Bryant D.A., Golbeck J.H.: Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production. Biochemistry, 49, 10264–10266 (2010)LubnerC.E.KnörzerP.SilvaP.J.N.VincentK.A.HappeT.BryantD.A.GolbeckJ.H.Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen productionBiochemistry491026410266201010.1021/bi101616721058656Search in Google Scholar

Lyon E.J., Shima S., Boecher R., Thauer R.K., Grevels F.W., Bill E., Roseboom W., Albracht S.P.J.: Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy. J. Am. Chem. Soc. 126, 14239–14248 (2004)LyonE.J.ShimaS.BoecherR.ThauerR.K.GrevelsF.W.BillE.RoseboomW.AlbrachtS.P.J.Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopyJ. Am. Chem. Soc.1261423914248200410.1021/ja046818s15506791Search in Google Scholar

Marques M.C., Tapia C., Gutiérrez-Sanz O., Ramos A.R., Keller K.L., Wall J.D., De Lacey A.L., Matias P.M., Pereira I.A.C.: The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis. Nat. Chem. Biol. 13, 544–550 (2017)MarquesM.C.TapiaC.Gutiérrez-SanzO.RamosA.R.KellerK.L.WallJ.D.De LaceyA.L.MatiasP.M.PereiraI.A.C.The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysisNat. Chem. Biol.13544550201710.1038/nchembio.233528319099Search in Google Scholar

Mertens R., Liese A.: Biotechnological applications of hydrogenases. Curr. Opin. Biotech. 15, 343–348 (2004)MertensR.LieseA.Biotechnological applications of hydrogenasesCurr. Opin. Biotech.15343348200410.1016/j.copbio.2004.06.01015358002Search in Google Scholar

Meyer J.: [FeFe] hydrogenases and their evolution: a genomic perspective. Cell. Mol. Life Sci. 64, 1063 (2007)MeyerJ.[FeFe] hydrogenases and their evolution: a genomic perspectiveCell. Mol. Life Sci.641063200710.1007/s00018-007-6477-4Search in Google Scholar

Morra S., Valetti F., Sarasso V., Castrignanò S., Sadeghi S.J., Gilardi G.: Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringens. Bioelectrochemistry, 106, 258–262 (2015)MorraS.ValettiF.SarassoV.CastrignanòS.SadeghiS.J.GilardiG.Hydrogen production at high Faradaic efficiency by a bio-electrode based on TiO2 adsorption of a new [FeFe]-hydrogenase from Clostridium perfringensBioelectrochemistry106258262201510.1016/j.bioelechem.2015.08.001Search in Google Scholar

Mulder D.W., Boyd E.S., Sarma R., Lange R.K., Endrizzi J.A., Broderick J.B., Peters J.W.: Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature, 465, 248–251 (2010)MulderD.W.BoydE.S.SarmaR.LangeR.K.EndrizziJ.A.BroderickJ.B.PetersJ.W.Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG)Nature465248251201010.1038/nature08993Search in Google Scholar

Mulder D.W., Ortillo D.O., Gardenghi D.J., Naumov A.V., Ruebush S.S., Szilagyi R.K., Huynh B., Broderick J.B., Peters J.W.: Activation of HydA(DeltaEFG) requires a preformed [4Fe-4S] cluster. Biochemistry, 48, 6240–6248 (2009)MulderD.W.OrtilloD.O.GardenghiD.J.NaumovA.V.RuebushS.S.SzilagyiR.K.HuynhB.BroderickJ.B.PetersJ.W.Activation of HydA(DeltaEFG) requires a preformed [4Fe-4S] clusterBiochemistry4862406248200910.1021/bi9000563Search in Google Scholar

Nedoluzhko A.I., Shumilin I.A., Mazhorova L.E., Popov V.O., Nikandrov V.V.: Enzymatic oxidation of cadmium and lead metals photodeposited on cadmium sulfide. Bioelectrochemistry, 53, 61–71 (2001)NedoluzhkoA.I.ShumilinI.A.MazhorovaL.E.PopovV.O.NikandrovV.V.Enzymatic oxidation of cadmium and lead metals photodeposited on cadmium sulfideBioelectrochemistry536171200110.1016/S0302-4598(00)00094-5Search in Google Scholar

Nicolet Y., de Lacey A.L., Vernède X., Fernandez V.M., Hatchikian E.C., Fontecilla-Camps J.C.: Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J. Am. Chem. Soc. 123, 1596–1601 (2001)NicoletY.de LaceyA.L.VernèdeX.FernandezV.M.HatchikianE.C.Fontecilla-CampsJ.C.Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricansJ. Am. Chem. Soc.12315961601200110.1021/ja0020963Search in Google Scholar

Nicolet Y., Fontecilla-Camps J.C.: Structure-Function relationships in [FeFe]-hydrogenase active site maturation. J. Biol. Chem. 287, 13532–13540 (2012)NicoletY.Fontecilla-CampsJ.C.Structure-Function relationships in [FeFe]-hydrogenase active site maturationJ. Biol. Chem.2871353213540201210.1074/jbc.R111.310797Search in Google Scholar

Nicolet Y., Piras C., Legrand P., Hatchikian C.E., Fontecilla-Camps J.C.: Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure, 7, 13–23 (1999)NicoletY.PirasC.LegrandP.HatchikianC.E.Fontecilla-CampsJ.C.Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear centerStructure71323199910.1016/S0969-2126(99)80005-7Search in Google Scholar

Nishikawa K., Ogata H., Higuchi Y.: Structural Basis of the Function of [NiFe]-hydrogenases. Chem. Lett. 49, 164–173 (2020)NishikawaK.OgataH.HiguchiY.Structural Basis of the Function of [NiFe]-hydrogenasesChem. Lett.49164173202010.1246/cl.190814Search in Google Scholar

Ogata H., Lubitz W., Higuchi Y.: Structure and function of [NiFe] hydrogenases. J. Biochem. 160, 251–258 (2016)OgataH.LubitzW.HiguchiY.Structure and function of [NiFe] hydrogenasesJ. Biochem.160251258201610.1093/jb/mvw04827493211Search in Google Scholar

Ono K.: Fundamental theories on a combined energy cycle of electrostatic induction hydrogen electrolytic cell and fuel cell to produce fully sustainable hydrogen energy. IEEJ T. Fund. Mat. 133, 615–621 (2013)OnoK.Fundamental theories on a combined energy cycle of electrostatic induction hydrogen electrolytic cell and fuel cell to produce fully sustainable hydrogen energyIEEJ T. Fund. Mat.133615621201310.1541/ieejfms.133.615Search in Google Scholar

Pagnier A., Martin L., Zeppieri L., Nicolet Y., Fontecilla-Camps J.C.: CO and CN− syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events. PNAS, 113, 104–109 (2016)PagnierA.MartinL.ZeppieriL.NicoletY.Fontecilla-CampsJ.C.CO and CN syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated eventsPNAS113104109201610.1073/pnas.1515842113471187726699472Search in Google Scholar

Pandelia M-E., Fourmond V., Tron-Infossi P., Lojou E., Bertrand P., Léger C., Giudici-Orticoni M-T., Lubitz W.: Membrane-bound hydrogenase I from the Hyperthermophilic Bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J. Am. Chem. Soc. 132, 6991–7004 (2010)PandeliaM-E.FourmondV.Tron-InfossiP.LojouE.BertrandP.LégerC.Giudici-OrticoniM-T.LubitzW.Membrane-bound hydrogenase I from the Hyperthermophilic Bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen toleranceJ. Am. Chem. Soc.13269917004201010.1021/ja910838d20441192Search in Google Scholar

Peters J.W., Lanzilotta W.N., Lemon B.J., Seefeldt L.C.: X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science, 282, 1853–1858 (1998)PetersJ.W.LanzilottaW.N.LemonB.J.SeefeldtL.C.X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolutionScience28218531858199810.1126/science.282.5395.18539836629Search in Google Scholar

Peters J.W., Schut G.J., Boyd E.S., Mulder D.W., Shepard E.M., Broderick J.B., King P.W., Adams M.W.W.: [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochim. Biophys. Acta, 1853, 1350–1369 (2015)PetersJ.W.SchutG.J.BoydE.S.MulderD.W.ShepardE.M.BroderickJ.B.KingP.W.AdamsM.W.W.[FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturationBiochim. Biophys. Acta185313501369201510.1016/j.bbamcr.2014.11.02125461840Search in Google Scholar

Pierik A.J., Hulstein M., Hagen W.R., Albracht S.P.J.: A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenases. Eur. J. Biochem. 258, 572–578 (1998)PierikA.J.HulsteinM.HagenW.R.AlbrachtS.P.J.A low-spin iron with CN and CO as intrinsic ligands forms the core of the active site in [Fe]-hydrogenasesEur. J. Biochem.258572578199810.1046/j.1432-1327.1998.2580572.x9874225Search in Google Scholar

Posewitz M.C., King P.W., Smolinski S.L., Zhang L., Seibert M., Ghirardi M.L.: Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenase. J. Biol. Chem. 279, 25711–25720 (2004)PosewitzM.C.KingP.W.SmolinskiS.L.ZhangL.SeibertM.GhirardiM.L.Discovery of two novel radical S-adenosylmethionine proteins required for the assembly of an active [Fe] hydrogenaseJ. Biol. Chem.2792571125720200410.1074/jbc.M40320620015082711Search in Google Scholar

Posewitz M.C., Mulder D.W., Peters J.W.: New frontiers in hydrogenase structure and biosynthesis. Curr. Chem. Biol. 2, 178–199 (2008)PosewitzM.C.MulderD.W.PetersJ.W.New frontiers in hydrogenase structure and biosynthesisCurr. Chem. Biol.2178199200810.2174/2212796810802020178Search in Google Scholar

Reisner E., Fontecilla-Camps J.C., Armstrong F.A.: Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. 5, 550–552 (2009)ReisnerE.Fontecilla-CampsJ.C.ArmstrongF.A.Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 productionChem. Commun.5550552200910.1039/B817371KSearch in Google Scholar

Reissmann S., Hochleitner E., Wang H., Paschos A., Lottspeich F., Glass R.S., Böck A.: Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligands. Science, 299, 1067–1070 (2003)ReissmannS.HochleitnerE.WangH.PaschosA.LottspeichF.GlassR.S.BöckA.Taming of a poison: biosynthesis of the NiFe-hydrogenase cyanide ligandsScience29910671070200310.1126/science.108097212586941Search in Google Scholar

Rubach J.K., Brazzolotto X., Gaillard J., Fontecave M.: Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritima. FEBS Lett. 579, 5055–5060 (2005)RubachJ.K.BrazzolottoX.GaillardJ.FontecaveM.Biochemical characterization of the HydE and HydG iron-only hydrogenase maturation enzymes from Thermatoga maritimaFEBS Lett.57950555060200510.1016/j.febslet.2005.07.09216137685Search in Google Scholar

Rupprecht J., Hankamer B., Mussgnug J.H., Ananyev G., Dismukes C., Kruse O., Perspectives and advances of biological H2 production in microorganisms. Appl. Microbiol. Biot. 72, 442–449 (2006)RupprechtJ.HankamerB.MussgnugJ.H.AnanyevG.DismukesC.KruseO.Perspectives and advances of biological H2 production in microorganismsAppl. Microbiol. Biot.72442449200610.1007/s00253-006-0528-x16896600Search in Google Scholar

Salomone-Stagni M., Stellato F., Whaley CM., Vogt S., Morante S., Shima S., Rauchfuss T.B., Meyer-Klaucke W.: The iron-site structure of [Fe]-hydrogenase and model systems: an X-ray absorption near edge spectroscopy study. Dalton Trans. 39, 3057–3064 (2010)Salomone-StagniM.StellatoF.WhaleyCM.VogtS.MoranteS.ShimaS.RauchfussT.B.Meyer-KlauckeW.The iron-site structure of [Fe]-hydrogenase and model systems: an X-ray absorption near edge spectroscopy studyDalton Trans.3930573064201010.1039/b922557a346556720221540Search in Google Scholar

Schoelmerich M.C., Müller V.: Energy-converting hydrogenases: the link between H2 metabolism and energy conservation. Cell. Mol. Life Sci. 77, 1461–1481 (2020)SchoelmerichM.C.MüllerV.Energy-converting hydrogenases: the link between H2 metabolism and energy conservationCell. Mol. Life Sci.7714611481202010.1007/s00018-019-03329-531630229Search in Google Scholar

Shafaat H.S., Rüdiger O., Ogata H., Lubitz W.: [NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditions. BBA-Bioenergetics, 1827, 986–1002 (2013)ShafaatH.S.RüdigerO.OgataH.LubitzW.[NiFe] hydrogenases: A common active site for hydrogen metabolism under diverse conditionsBBA-Bioenergetics18279861002201310.1016/j.bbabio.2013.01.01523399489Search in Google Scholar

Shepard E.M, Broderick J.B.: et al. [FeFe]-Hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxide. J. Am. Chem. Soc. 132, 9247–9249 (2010)ShepardE.MBroderickJ.B.[FeFe]-Hydrogenase maturation: HydG-catalyzed synthesis of carbon monoxideJ. Am. Chem. Soc.13292479249201010.1021/ja101227320565074Search in Google Scholar

Shepard E.M., McGlynn S.E., Bueling A.L., Grady-Smith C.S., George S.J., Winslow M.A., Cramer S.P., Peters J.W., Broderick J.B.: Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. PNAS, 107, 10448–10453 (2010)ShepardE.M.McGlynnS.E.BuelingA.L.Grady-SmithC.S.GeorgeS.J.WinslowM.A.CramerS.P.PetersJ.W.BroderickJ.B.Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffoldPNAS1071044810453201010.1073/pnas.1001937107289083420498089Search in Google Scholar

Shima S., Pilak O., Vogt S., Schick M., Stagni M.S., Meyer-Klaucke W., Warkentin E., Thauer R.K., Ermler U.: The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site. Science, 321, 572–575 (2008)ShimaS.PilakO.VogtS.SchickM.StagniM.S.Meyer-KlauckeW.WarkentinE.ThauerR.K.ErmlerU.The crystal structure of [Fe]-hydrogenase reveals the geometry of the active siteScience321572575200810.1126/science.115897818653896Search in Google Scholar

Shima S., Thauer R.K.: A third type of hydrogenase catalyzing H2 activation. Chem. Rec. 7, 37–46 (2007)ShimaS.ThauerR.K.A third type of hydrogenase catalyzing H2 activationChem. Rec.73746200710.1002/tcr.2011117304591Search in Google Scholar

Shima S., Vogt S., Göbels A., Bill E.: Iron-chromophore circular dichroism of [Fe]-hydrogenase: The conformational change required for H2 activation. Angew. Chem. Int. Edit. 49, 9917–9921 (2010)ShimaS.VogtS.GöbelsA.BillE.Iron-chromophore circular dichroism of [Fe]-hydrogenase: The conformational change required for H2 activationAngew. Chem. Int. Edit.4999179921201010.1002/anie.20100625521105038Search in Google Scholar

Shomura Y., Higuchi Y.: Structural aspects of [NiFe]-hydrogenases. Rev. Inorg. Chem. 33, 173–192 (2013)ShomuraY.HiguchiY.Structural aspects of [NiFe]-hydrogenasesRev. Inorg. Chem.33173192201310.1515/revic-2013-0005Search in Google Scholar

Show K-Y., Lee D-J.: Bioreactor and bioprocess design for biohydrogen production (w) Biohydrogen red. A. Pandey, J-S. Chang, P.C. Hallenbeck, C. Larroche, Elsevier, 2013, s. 317–337ShowK-Y.LeeD-J.Bioreactor and bioprocess design for biohydrogen production (w) Biohydrogen red. PandeyA.ChangJ-S.HallenbeckP.C.LarrocheC.Elsevier2013, s. 31733710.1016/B978-0-444-59555-3.00013-1Search in Google Scholar

Soboh B., Stripp S.T., Muhr E., Granich C., Braussemann M., Herzberg M., Heberle J., Gary Sawers R.: [NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN− ligands. FEBS Lett. 586, 3882–3887 (2012)SobohB.StrippS.T.MuhrE.GranichC.BraussemannM.HerzbergM.HeberleJ.Gary SawersR.[NiFe]-hydrogenase maturation: isolation of a HypC-HypD complex carrying diatomic CO and CN ligandsFEBS Lett.58638823887201210.1016/j.febslet.2012.09.019Search in Google Scholar

Søndergaard D., Pedersen C.N.S., Greening C.: HydDB: A web tool for hydrogenase classification and analysis. Sci. Rep-UK. 6, 34212 (2016)SøndergaardD.PedersenC.N.S.GreeningC.HydDB: A web tool for hydrogenase classification and analysisSci. Rep-UK.634212201610.1038/srep34212Search in Google Scholar

Sun J., Hopkins R.C., Jr F.E.J., McTernan P.M., Adams M.W.W.: Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: A key enzyme in biofuel production. PLOS ONE, 5, e10526 (2010)SunJ.HopkinsR.C.JrF.E.J.McTernanP.M.AdamsM.W.W.Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: A key enzyme in biofuel productionPLOS ONE5e10526201010.1371/journal.pone.0010526Search in Google Scholar

Teng Y., Xu Y., Wang X., Christie P.: Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. Front. Microbiol. 10, 106 (2019)TengY.XuY.WangX.ChristieP.Function of biohydrogen metabolism and related microbial communities in environmental bioremediationFront. Microbiol10106201910.3389/fmicb.2019.00106Search in Google Scholar

Thauer R.K.: Hydrogenases and the global H2 cycle. Eur. J. Inorg. Chem. 2011, 919–921 (2011)ThauerR.K.Hydrogenases and the global H2 cycleEur. J. Inorg. Chem.2011919921201110.1002/ejic.201001255Search in Google Scholar

Trohalaki S., Pachter R.: Mechanism of hydrogen production in [Fe–Fe]-hydrogenases: A quantum mechanics/molecular mechanics study. Int. J. Hydrogen Energ. 35, 5318–5331 (2010)TrohalakiS.PachterR.Mechanism of hydrogen production in [Fe–Fe]-hydrogenases: A quantum mechanics/molecular mechanics studyInt. J. Hydrogen Energ.3553185331201010.1016/j.ijhydene.2010.03.020Search in Google Scholar

Tye J.W., Hall M.B., Darensbourg M.Y.: Better than platinum? Fuel cells energized by enzymes. PNAS, 102, 16911–16912 (2005)TyeJ.W.HallM.B.DarensbourgM.Y.Better than platinum? Fuel cells energized by enzymesPNAS1021691116912200510.1073/pnas.0508740102Search in Google Scholar

Vignais P.M., Billoud B., Meyer J.: Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25, 455–501 (2001)VignaisP.M.BilloudB.MeyerJ.Classification and phylogeny of hydrogenasesFEMS Microbiol. Rev.25455501200110.1016/S0168-6445(01)00063-8Search in Google Scholar

Vignais P.M., Billoud B.: Occurrence, classification, and biological function of hydrogenases: an overview. Chem. Rev. 107, 4206–4272 (2007)VignaisP.M.BilloudB.Occurrence, classification, and biological function of hydrogenases: an overviewChem. Rev.10742064272200710.1021/cr050196r17927159Search in Google Scholar

Vignais P.M., Colbeau A.: Molecular biology of microbial hydrogenases. Curr. Issues Mol. Biol. 6, 159–188 (2004)VignaisP.M.ColbeauA.Molecular biology of microbial hydrogenasesCurr. Issues Mol. Biol.61591882004Search in Google Scholar

Vignais P.M., Toussaint B.: Molecular biology of membrane-bound H2 uptake hydrogenases. Arch. Microbiol. 161, 1–10 (1994)VignaisP.M.ToussaintB.Molecular biology of membrane-bound H2 uptake hydrogenasesArch. Microbiol.161110199410.1007/BF00276483Search in Google Scholar

Vincent K.A., Cracknell JA., Lenz O., Zebger I., Friedrich B., Armstrong F.A.: Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels. PNAS, 102, 16951–16954 (2005)VincentK.A.CracknellJA.LenzO.ZebgerI.FriedrichB.ArmstrongF.A.Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levelsPNAS1021695116954200510.1073/pnas.0504499102128797516260746Search in Google Scholar

Volbeda A., Amara P., Iannello M., De Lacey A.L., Cavazza C., Fontecilla-Camps J.C.: Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenase. Chem. Commun. (Camb.) 49, 7061–7063 (2013)VolbedaA.AmaraP.IannelloM.De LaceyA.L.CavazzaC.Fontecilla-CampsJ.C.Structural foundations for the O2 resistance of Desulfomicrobium baculatum [NiFeSe]-hydrogenaseChem. Commun. (Camb.)4970617063201310.1039/c3cc43619e23811828Search in Google Scholar

Wait A.F., Parkin A., Morley G.M., dos Santos L., Armstrong F.A.: Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst. J. Phys. Chem. C. 114, 12003–12009 (2010)WaitA.F.ParkinA.MorleyG.M.dos SantosL.ArmstrongF.A.Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalystJ. Phys. Chem. C.1141200312009201010.1021/jp102616mSearch in Google Scholar

Watanabe S., Matsumi R., Arai T., Atomi H., Imanaka T., Miki K.: Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: Insights into cyanation reaction by thiol redox signaling. Mol. Cell. 27, 29–40 (2007)WatanabeS.MatsumiR.AraiT.AtomiH.ImanakaT.MikiK.Crystal structures of [NiFe] hydrogenase maturation proteins HypC, HypD, and HypE: Insights into cyanation reaction by thiol redox signalingMol. Cell.272940200710.1016/j.molcel.2007.05.03917612488Search in Google Scholar

Wu C-H., Haja D.K., Adams M.W.W.: Cytoplasmic and membrane-bound hydrogenases from Pyrococcus furiosus (w) Methods in Enzymology, red. F. Armstrong, Academic Press, 2018, s. 153–168WuC-H.HajaD.K.AdamsM.W.W.Cytoplasmic and membrane-bound hydrogenases from Pyrococcus furiosus (w) Methods in Enzymology, red. ArmstrongF.Academic Press2018, s. 15316810.1016/bs.mie.2018.10.00930509464Search in Google Scholar

Wu C-H., McTernan P.M., Walter M.E., Adams M.W.W.: Production and application of a soluble hydrogenase from Pyrococcus furiosus. Archaea, 2015, Article ID 912582 (2015)WuC-H.McTernanP.M.WalterM.E.AdamsM.W.W.Production and application of a soluble hydrogenase from Pyrococcus furiosusArchaea2015, Article ID 912582201510.1155/2015/912582462038626543406Search in Google Scholar

Wu L-F., Mandrand M.A.: Microbial hydrogenases: Primary structure, classification, signatures and phylogeny. FEMS Microbiol. Lett. 104, 243–269 (1993)WuL-F.MandrandM.A.Microbial hydrogenases: Primary structure, classification, signatures and phylogenyFEMS Microbiol. Lett.104243269199310.1111/j.1574-6968.1993.tb05870.x8318259Search in Google Scholar

Wulff P., Thomas C., Sargent F., Armstrong F.A.: How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structure. J. Biol. Inorg. Chem. 21, 121–134 (2016)WulffP.ThomasC.SargentF.ArmstrongF.A.How the oxygen tolerance of a [NiFe]-hydrogenase depends on quaternary structureJ. Biol. Inorg. Chem.21121134201610.1007/s00775-015-1327-6477182326861789Search in Google Scholar

Xu T., Yin C-J.M., Wodrich M.D., Mazza S., Schultz K.M., Scopelliti R., Hu X.: A Functional model of [Fe]-hydrogenase. J. Am. Chem. Soc. 138, 3270–3273 (2016)XuT.YinC-J.M.WodrichM.D.MazzaS.SchultzK.M.ScopellitiR.HuX.A Functional model of [Fe]-hydrogenaseJ. Am. Chem. Soc.13832703273201610.1021/jacs.5b1209526926708Search in Google Scholar

Yoon K.S, Fukuda K, Fujisawa K, Nishihara H: Purification and characterization of a highly thermostable, oxygen-resistant, respiratory [NiFe]-hydrogenase from a marine, aerobic hydrogen-oxidizing bacterium Hydrogenovibrio marinus. Int. J. Hydrogen Energ. 36, 7081–7088 (2011)YoonK.SFukudaKFujisawaKNishiharaHPurification and characterization of a highly thermostable, oxygen-resistant, respiratory [NiFe]-hydrogenase from a marine, aerobic hydrogen-oxidizing bacterium Hydrogenovibrio marinusInt. J. Hydrogen Energ.3670817088201110.1016/j.ijhydene.2011.03.049Search in Google Scholar

eISSN:
2545-3149
Języki:
Angielski, Polski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Life Sciences, Microbiology and Virology