Otwarty dostęp

Automatic parametric fault detection in complex analog systems based on a method of minimum node selection


Zacytuj

Aminian, F. and Modular, A.(2007). Fault-diagnostic system for analog electronic circuit using neural networks with wavelet transform as a preprocessor, IEEE Transactions on Instrumentation and Measurement56(5): 1546–1554.10.1109/TIM.2007.904549Search in Google Scholar

Arabas, J. (2004). Lectures in Evolutionary Algorithms, WNT, Warsaw, (in Polish).Search in Google Scholar

Bilski, A. (2013). Diagnostic of complex analog systems with parametric faults using support vector machines, in T. Kwater and B. Twaróg (Eds.), Computing in Science and Technology 2012/13, University of Rzeszow, Rzeszów, pp. 7–24.Search in Google Scholar

Bilski, P. (2007). Automated diagnostic system using graph clustering algorithm and fuzzy logic method, 18th European Conference on Circuit Theory and Design 2007, Seville, Spain, pp. 779–782.Search in Google Scholar

Bilski, P. (2011). Automated selection of kernel parameters in diagnostics of analog systems, Przegląd Elektrotechniczny87(5): 9–13.Search in Google Scholar

Bilski, P. and Wojciechowski, J. (2007). Automated diagnostics of analog systems using fuzzy logic approach, IEEE Transactions on Instrumentation and Measurement56(6): 2175–2185.10.1109/TIM.2007.908152Search in Google Scholar

Bilski, P. and Wojciechowski, J. (2012). Current research trends in diagnostics of analog systems, 2012 International Conference on IEEE Signals and Electronic Systems (ICSES), Wrocław, Poland, pp. 1–11.Search in Google Scholar

Bushell, L. and Vishwani, D.A. (2002). Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Springer US, New York, NY.10.1007/b117406Search in Google Scholar

Czaja, Z. and Zielonko, R. (2004). On fault diagnosis of analogue electronic circuits based on transformations in multidimensional spaces, Measurement35(3): 293–301.10.1016/j.measurement.2003.10.004Search in Google Scholar

Chakrabarti, S., Cherubal, S. and Chatterjee, A. (1999). Fault diagnosis for mixed-signal electronic systems, IEEE Aerospace Conference, Snowmass at Aspen, CO, USA, pp. 169–179.Search in Google Scholar

Chatterjee, A., Kim, B. and Nagi, N. (1996). DC built-in self-test for linear analog circuits, IEEE Design and Test of Computers13(2): 26–33.10.1109/54.500198Search in Google Scholar

Fang, L., Plamen, K.N. and Sule, O. (2006). Parametric fault diagnosis for analog circuits using a Bayesian framework, Proceedings of the 24th IEEE VLSI Test Symposium VTS’06, Berkeley, CA, USA, pp. 272–277.Search in Google Scholar

Gendreau, M. (2003). An introduction to tabu search, in F. Glover and G.A. Kochenberger (Eds.), Handbook of Meta-heuristics, Springer, US, New York, NY, pp. 37–54.10.1007/0-306-48056-5_2Search in Google Scholar

Grzechca, D., Golonek, T. and Rutkowski, J. (2006). Analog fault AC dictionary creation—the fuzzy set approach, IEEE International Symposium on Circuits and Systems, Kos, Greece, pp. 5744–5747.Search in Google Scholar

Grzechca, D., Golonek, T. and Rutkowski, J. (2007). Simulated annealing with fuzzy fitness function for test frequencies selection, Proceedings of the IEEE Conference on Fuzzy Systems, London, UK, pp. 1–6.Search in Google Scholar

Grasso, F., Luchetta, A., Manetti, S. and Piccirilla, M.C. (2007). Method for the automatic selection of test frequencies in analog fault diagnosis, IEEE Transactions on Instrumentation and Measurement56(6): 2322–2329.10.1109/TIM.2007.907947Search in Google Scholar

Golonek, T., Grzechca, D. and Rutkowski, J. (2008). Optimization of PWL analog testing excitation by means of genetic algorithm, Proceedings of the International Conference on Signals and Electronic Systems, Kraków, Poland, pp. 541–548Search in Google Scholar

Golonek, T. and Rutkowski, J. (2007). Genetic-algorithm-based method for optimal analog test points selection, IEEE Transactions on Circuits and Systems II54(2): 117–121.10.1109/TCSII.2006.884112Search in Google Scholar

Guo, Y.-M., Wang, X.-T., Liu, Ch., Zheng, Y.-F. and Cai, X.-B. (2014). Electronic system fault diagnosis with optimized multi-kernel SVM by improved CPSO, Maintenance and Reliability16(1): 85–91.Search in Google Scholar

Hochwald, W. and Bastian, J.D. (1979). A DC dictionary approach for analog fault dictionary determination, IEEE Transactions on Circuits and Systems26(7): 523–529.10.1109/TCS.1979.1084665Search in Google Scholar

Huertas, I.L (1993). Test and design for testability of analog and mixed-signal integrated circuits: Theoretical basis and pragmatical approaches, Proceedings of the European Conference on Circuit Theory and Design, Davos, Switzerland, pp. 1389–1407.Search in Google Scholar

Huang, K., Stratigopoulos, H.-G. and Mir, S. (2010). Fault diagnosis of analog circuits based on machine learning, 2010 Design, Automation and Test in Europe Conference and Exhibition (DATE 2010), Dresden, Germany, pp. 1761–1766.Search in Google Scholar

Jantos, P., Grzechca, D. and Rutkowski, J. (2009). A global parametric faults diagnosis with the use of artificial neural networks, European Conference on Circuit Theory and Design, Antalya, Turkey, pp. 651–655.Search in Google Scholar

Jantos, P., Grzechca, D. and Zielonko, R. (2009). Global parametric faults identification in analog electronic circuits, Metrology and Measurement Systems16(3): 391–402.Search in Google Scholar

Korbicz, J., Obuchowicz, A. and Uciński, D. (1994). Artificial Neural Networks. Fundamentals and Applications, PLJ, Warsaw, (in Polish).Search in Google Scholar

Kuczyński, A. and Ossowski, M. (2009). Analog circuits diagnosis using discrete wavelet transform of supply current, Metrology and Measurement Systems16(1): 77–85.Search in Google Scholar

Milor, L.S. (1998). A tutorial introduction to research on analog and mixed-signal circuit testing, IEEE Transactions on Circuits and Systems II41(10): 1389–1407.10.1109/82.728852Search in Google Scholar

Nguyen, W.H. and Golinval, J.-C. (2010). Fault detection based on kernel principal component analysis, Engineering Structures32(11): pp. 3683–3691.Search in Google Scholar

Osowski, S. (2006). Artificial Neural Networks for Information Processing, Warsaw University of Technology Press, Warsaw, (in Polish).Search in Google Scholar

Ohletz, M. (1991). Hybrid built-in self-test for mixed analog/digital integrated circuits, European Test Conference, Munich, Germany, pp. 307–316.Search in Google Scholar

Pan, C. and Cheng, K.-T. (1995). Pseudorandom testing and signature analysis for mixed-signal systems, IEEE International Conference on Computer-Aided Design, San Jose, CA, USA, pp. 102–107.Search in Google Scholar

Prasad, V.C. and Babu, N.S.C. (2000). Selection of test nodes for analog fault diagnosis in dictionary approach, IEEE Transactions on Instrumentation and Measurement49(6): 1289–1297.10.1109/19.893273Search in Google Scholar

Rutkowski, J. and Grzechca, D. (2009). Fault diagnosis in analog electronic circuits—the SVM approach, Metrology and Measurement Systems16(4): 583–598.Search in Google Scholar

Salama, A.E., Starzyk, J.A. and Bandler, J.W. (1984). A unified decomposition approach for fault location in large analog circuits, IEEE Transactions on Circuits and Systems31(7): 609–622.10.1109/TCS.1984.1085558Search in Google Scholar

Sałat, R. and Osowski, S. (2011). Support vector machine for soft fault location in electrical circuits, Journal of Intelligent and Fuzzy Systems22(1): 21–31.10.3233/IFS-2010-0471Search in Google Scholar

Sen, N. and Saeks, R. (1979). Fault diagnosis for linear systems via multifrequency measurements, IEEE Transactions on Circuits and Systems26(7): 457–465.10.1109/TCS.1979.1084659Search in Google Scholar

Starzyk, J.A. and Dai, H. (1992). A decomposition approach for testing large analog networks, Journal of Electronic Testing: Theory and Applications3(3): 181–195.10.1007/BF00134729Search in Google Scholar

Starzyk, J.A., Liu, D., Liu, Z.-H., Nelson, D.E. and Rutkowski, J. (2004). Entropy-based optimum test points selection for analog fault dictionary techniques, IEEE Transactions on Instrumentation and Measurement53(2): 754–761.10.1109/TIM.2004.827085Search in Google Scholar

Sun, J., Wang, Ch., Sun, J. and Wang, L. (2013). Analog circuit soft fault diagnosis based on PCA and PSO-SVM, Journal of Networks8(12): 2791–2796.10.4304/jnw.8.12.2791-2796Search in Google Scholar

Spina, R. and Upadhyaya, S. (1997). Linear circuit fault diagnosis using neuromorphic analyzers, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing44(3): 188–196.10.1109/82.558453Search in Google Scholar

Tadeusiewicz, M., Hałgas, S. and Korzybski, M. (2011). Multiple catastrophic fault diagnosis of analog circuits considering the component tolerances, International Journal of Circuit Theory Application44(3): 188–196.10.2478/v10178-011-0002-1Search in Google Scholar

Tadeusiewicz, M. and Korzybski, M. (2000). A method for fault diagnosis in linear electronic circuits, International Journal of Circuit Theory and Applications28(3): 245–262.10.1002/(SICI)1097-007X(200005/06)28:3<245::AID-CTA103>3.0.CO;2-XSearch in Google Scholar

Tadeusiewicz, M. and Hałgas, S. (2006). An algorithm for multiple fault diagnosis in analogue circuits, International Journal of Circuit Theory and Applications34(6): 607–615.10.1002/cta.374Search in Google Scholar

Widodo, A. and Bo-Suk, T. (2007). Support vector machine in machine condition monitoring and fault diagnosis, Mechanical Systems and Signal Processing21(6): 2560–2574.10.1016/j.ymssp.2006.12.007Search in Google Scholar

Wang, P. and Yang, S. (2005). A new diagnosis approach for handling tolerance in analog and mixed-signal circuits by using fuzzy math, IEEE Transactions on Circuits and Systems I: Regular Papers52(10): 2118–2127.10.1109/TCSI.2005.853266Search in Google Scholar

Vapnik, V. and Cortes, C. (1995). Support-vector networks, Machine Learning20(3): 273–297.10.1007/BF00994018Search in Google Scholar

eISSN:
2083-8492
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Mathematics, Applied Mathematics