Deep Neural Networks (DNN) are nothing but neural networks with many hidden layers. DNNs are becoming popular in automatic speech recognition tasks which combines a good acoustic with a language model. Standard feedforward neural networks cannot handle speech data well since they do not have a way to feed information from a later layer back to an earlier layer. Thus, Recurrent Neural Networks (RNNs) have been introduced to take temporal dependencies into account. However, the shortcoming of RNNs is that long-term dependencies due to the vanishing/exploding gradient problem cannot be handled. Therefore, Long Short-Term Memory (LSTM) networks were introduced, which are a special case of RNNs, that takes long-term dependencies in a speech in addition to short-term dependencies into account. Similarily, GRU (Gated Recurrent Unit) networks are an improvement of LSTM networks also taking long-term dependencies into consideration. Thus, in this paper, we evaluate RNN, LSTM, and GRU to compare their performances on a reduced TED-LIUM speech data set. The results show that LSTM achieves the best word error rates, however, the GRU optimization is faster while achieving word error rates close to LSTM.
The lack of attention during the driving task is considered as a major risk factor for fatal road accidents around the world. Despite the ever-growing trend for autonomous driving which promises to bring greater road-safety benefits, the fact is today’s vehicles still only feature partial and conditional automation, demanding frequent driver action. Moreover, the monotony of such a scenario may induce fatigue or distraction, reducing driver awareness and impairing the regain of the vehicle’s control. To address this challenge, we introduce a non-intrusive system to monitor the driver in terms of fatigue, distraction, and activity. The proposed system explores state-of-the-art sensors, as well as machine learning algorithms for data extraction and modeling. In the domain of fatigue supervision, we propose a feature set that considers the vehicle’s automation level. In terms of distraction assessment, the contributions concern (i) a holistic system that covers the full range of driver distraction types and (ii) a monitoring unit that predicts the driver activity causing the faulty behavior. By comparing the performance of Support Vector Machines against Decision Trees, conducted experiments indicated that our system can predict the driver’s state with an accuracy ranging from 89% to 93%.
The autonomous navigation of robots in unknown environments is a challenge since it needs the integration of a several subsystems to implement different functionality. It needs drawing a map of the environment, robot map localization, motion planning or path following, implementing the path in real-world, and many others; all have to be implemented simultaneously. Thus, the development of autonomous robot navigation (ARN) problem is essential for the growth of the robotics field of research. In this paper, we present a simulation of a swarm intelligence method is known as Particle Swarm Optimization (PSO) to develop an ARN system that can navigate in an unknown environment, reaching a pre-defined goal and become collision-free. The proposed system is built such that each subsystem manipulates a specific task which integrated to achieve the robot mission. PSO is used to optimize the robot path by providing several waypoints that minimize the robot traveling distance. The Gazebo simulator was used to test the response of the system under various envirvector representing a solution to the optimization problem.onmental conditions. The proposed ARN system maintained robust navigation and avoided the obstacles in different unknown environments. vector representing a solution to the optimization problem.
Many recent studies have applied to spike neural networks with spike-timing-dependent plasticity (STDP) to machine learning problems. The learning abilities of dopamine-modulated STDP (DA-STDP) for reward-related synaptic plasticity have also been gathering attention. Following these studies, we hypothesize that a network structure combining self-organized STDP and reward-related DA-STDP can solve the machine learning problem of pattern classification. Therefore, we studied the ability of a network in which recurrent spiking neural networks are combined with STDP for non-supervised learning, with an output layer joined by DA-STDP for supervised learning, to perform pattern classification. We confirmed that this network could perform pattern classification using the STDP effect for emphasizing features of the input spike pattern and DA-STDP supervised learning. Therefore, our proposed spiking neural network may prove to be a useful approach for machine learning problems.
Big data research has become an important discipline in information systems research. However, the flood of data being generated on the Internet is increasingly unstructured and non-numeric in the form of images and texts. Thus, research indicates that there is an increasing need to develop more efficient algorithms for treating mixed data in big data for effective decision making. In this paper, we apply the classical K-means algorithm to both numeric and categorical attributes in big data platforms. We first present an algorithm that handles the problem of mixed data. We then use big data platforms to implement the algorithm, demonstrating its functionalities by applying the algorithm in a detailed case study. This provides us with a solid basis for performing more targeted profiling for decision making and research using big data. Consequently, the decision makers will be able to treat mixed data, numerical and categorical data, to explain and predict phenomena in the big data ecosystem. Our research includes a detailed end-to-end case study that presents an implementation of the suggested procedure. This demonstrates its capabilities and the advantages that allow it to improve the decision-making process by targeting organizations’ business requirements to a specific cluster[s]/profiles[s] based on the enhancement outcomes.
Deep Neural Networks (DNN) are nothing but neural networks with many hidden layers. DNNs are becoming popular in automatic speech recognition tasks which combines a good acoustic with a language model. Standard feedforward neural networks cannot handle speech data well since they do not have a way to feed information from a later layer back to an earlier layer. Thus, Recurrent Neural Networks (RNNs) have been introduced to take temporal dependencies into account. However, the shortcoming of RNNs is that long-term dependencies due to the vanishing/exploding gradient problem cannot be handled. Therefore, Long Short-Term Memory (LSTM) networks were introduced, which are a special case of RNNs, that takes long-term dependencies in a speech in addition to short-term dependencies into account. Similarily, GRU (Gated Recurrent Unit) networks are an improvement of LSTM networks also taking long-term dependencies into consideration. Thus, in this paper, we evaluate RNN, LSTM, and GRU to compare their performances on a reduced TED-LIUM speech data set. The results show that LSTM achieves the best word error rates, however, the GRU optimization is faster while achieving word error rates close to LSTM.
The lack of attention during the driving task is considered as a major risk factor for fatal road accidents around the world. Despite the ever-growing trend for autonomous driving which promises to bring greater road-safety benefits, the fact is today’s vehicles still only feature partial and conditional automation, demanding frequent driver action. Moreover, the monotony of such a scenario may induce fatigue or distraction, reducing driver awareness and impairing the regain of the vehicle’s control. To address this challenge, we introduce a non-intrusive system to monitor the driver in terms of fatigue, distraction, and activity. The proposed system explores state-of-the-art sensors, as well as machine learning algorithms for data extraction and modeling. In the domain of fatigue supervision, we propose a feature set that considers the vehicle’s automation level. In terms of distraction assessment, the contributions concern (i) a holistic system that covers the full range of driver distraction types and (ii) a monitoring unit that predicts the driver activity causing the faulty behavior. By comparing the performance of Support Vector Machines against Decision Trees, conducted experiments indicated that our system can predict the driver’s state with an accuracy ranging from 89% to 93%.
The autonomous navigation of robots in unknown environments is a challenge since it needs the integration of a several subsystems to implement different functionality. It needs drawing a map of the environment, robot map localization, motion planning or path following, implementing the path in real-world, and many others; all have to be implemented simultaneously. Thus, the development of autonomous robot navigation (ARN) problem is essential for the growth of the robotics field of research. In this paper, we present a simulation of a swarm intelligence method is known as Particle Swarm Optimization (PSO) to develop an ARN system that can navigate in an unknown environment, reaching a pre-defined goal and become collision-free. The proposed system is built such that each subsystem manipulates a specific task which integrated to achieve the robot mission. PSO is used to optimize the robot path by providing several waypoints that minimize the robot traveling distance. The Gazebo simulator was used to test the response of the system under various envirvector representing a solution to the optimization problem.onmental conditions. The proposed ARN system maintained robust navigation and avoided the obstacles in different unknown environments. vector representing a solution to the optimization problem.
Many recent studies have applied to spike neural networks with spike-timing-dependent plasticity (STDP) to machine learning problems. The learning abilities of dopamine-modulated STDP (DA-STDP) for reward-related synaptic plasticity have also been gathering attention. Following these studies, we hypothesize that a network structure combining self-organized STDP and reward-related DA-STDP can solve the machine learning problem of pattern classification. Therefore, we studied the ability of a network in which recurrent spiking neural networks are combined with STDP for non-supervised learning, with an output layer joined by DA-STDP for supervised learning, to perform pattern classification. We confirmed that this network could perform pattern classification using the STDP effect for emphasizing features of the input spike pattern and DA-STDP supervised learning. Therefore, our proposed spiking neural network may prove to be a useful approach for machine learning problems.
Big data research has become an important discipline in information systems research. However, the flood of data being generated on the Internet is increasingly unstructured and non-numeric in the form of images and texts. Thus, research indicates that there is an increasing need to develop more efficient algorithms for treating mixed data in big data for effective decision making. In this paper, we apply the classical K-means algorithm to both numeric and categorical attributes in big data platforms. We first present an algorithm that handles the problem of mixed data. We then use big data platforms to implement the algorithm, demonstrating its functionalities by applying the algorithm in a detailed case study. This provides us with a solid basis for performing more targeted profiling for decision making and research using big data. Consequently, the decision makers will be able to treat mixed data, numerical and categorical data, to explain and predict phenomena in the big data ecosystem. Our research includes a detailed end-to-end case study that presents an implementation of the suggested procedure. This demonstrates its capabilities and the advantages that allow it to improve the decision-making process by targeting organizations’ business requirements to a specific cluster[s]/profiles[s] based on the enhancement outcomes.