Rivista e Edizione

Volume 13 (2023): Edizione 4 (October 2023)

Volume 13 (2023): Edizione 3 (June 2023)

Volume 13 (2023): Edizione 2 (March 2023)

Volume 13 (2023): Edizione 1 (January 2023)

Volume 12 (2022): Edizione 4 (October 2022)

Volume 12 (2022): Edizione 3 (July 2022)

Volume 12 (2021): Edizione 2 (April 2021)

Volume 12 (2022): Edizione 1 (January 2022)

Volume 11 (2021): Edizione 4 (October 2021)

Volume 11 (2021): Edizione 3 (July 2021)

Volume 11 (2021): Edizione 2 (April 2021)

Volume 11 (2021): Edizione 1 (January 2021)

Volume 10 (2020): Edizione 4 (October 2020)

Volume 10 (2020): Edizione 3 (July 2020)

Volume 10 (2020): Edizione 2 (April 2020)

Volume 10 (2020): Edizione 1 (January 2020)

Volume 9 (2019): Edizione 4 (October 2019)

Volume 9 (2019): Edizione 3 (July 2019)

Volume 9 (2019): Edizione 2 (April 2019)

Volume 9 (2019): Edizione 1 (January 2019)

Volume 8 (2018): Edizione 4 (October 2018)

Volume 8 (2018): Edizione 3 (July 2018)

Volume 8 (2018): Edizione 2 (April 2018)

Volume 8 (2018): Edizione 1 (January 2018)

Volume 7 (2017): Edizione 4 (October 2017)

Volume 7 (2017): Edizione 3 (July 2017)

Volume 7 (2017): Edizione 2 (April 2017)

Volume 7 (2017): Edizione 1 (January 2017)

Volume 6 (2016): Edizione 4 (October 2016)

Volume 6 (2016): Edizione 3 (July 2016)

Volume 6 (2016): Edizione 2 (April 2016)

Volume 6 (2016): Edizione 1 (January 2016)

Volume 5 (2015): Edizione 4 (October 2015)

Volume 5 (2015): Edizione 3 (July 2015)

Volume 5 (2015): Edizione 2 (April 2015)

Volume 5 (2015): Edizione 1 (January 2015)

Volume 4 (2014): Edizione 4 (October 2014)

Volume 4 (2014): Edizione 3 (July 2014)

Volume 4 (2014): Edizione 2 (April 2014)

Volume 4 (2014): Edizione 1 (January 2014)

Volume 3 (2013): Edizione 4 (October 2013)

Volume 3 (2013): Edizione 3 (July 2013)

Volume 3 (2013): Edizione 2 (April 2013)

Volume 3 (2013): Edizione 1 (January 2013)

Dettagli della rivista
Formato
Rivista
eISSN
2449-6499
Pubblicato per la prima volta
30 Dec 2014
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

Volume 4 (2014): Edizione 3 (July 2014)

Dettagli della rivista
Formato
Rivista
eISSN
2449-6499
Pubblicato per la prima volta
30 Dec 2014
Periodo di pubblicazione
4 volte all'anno
Lingue
Inglese

Cerca

0 Articoli
Accesso libero

GPFIS-Control: A Genetic Fuzzy System For Control Tasks

Pubblicato online: 01 Mar 2015
Pagine: 167 - 179

Astratto

Abstract

This work presents a Genetic Fuzzy Controller (GFC), called Genetic Programming Fuzzy Inference System for Control tasks (GPFIS-Control). It is based on Multi-Gene Genetic Programming, a variant of canonical Genetic Programming. The main characteristics and concepts of this approach are described, as well as its distinctions from other GFCs. Two benchmarks application of GPFIS-Control are considered: the Cart-Centering Problem and the Inverted Pendulum. In both cases results demonstrate the superiority and potentialities of GPFIS-Control in relation to other GFCs found in the literature.

Accesso libero

New Ranking Method For Fuzzy Numbers By Their Expansion Center

Pubblicato online: 01 Mar 2015
Pagine: 181 - 187

Astratto

Abstract

Based on the area between the curve of the membership function of a fuzzy number and the horizontal real axis, a characteristic as a new numerical index, called the expansion center, for fuzzy numbers is proposed. An intuitive and reasonable ranking method for fuzzy numbers based on this characteristic is also established. The new ranking method is applicable for decision making and data analysis in fuzz environments. An important criterion of the goodness for ranking fuzzy numbers, the geometric intuitivity, is also introduced. It guarantees coinciding with the natural ordering of the real numbers.

Accesso libero

Repulsive Self-Adaptive Acceleration Particle Swarm Optimization Approach

Pubblicato online: 01 Mar 2015
Pagine: 189 - 204

Astratto

Abstract

Adaptive Particle Swarm Optimization (PSO) variants have become popular in recent years. The main idea of these adaptive PSO variants is that they adaptively change their search behavior during the optimization process based on information gathered during the run. Adaptive PSO variants have shown to be able to solve a wide range of difficult optimization problems efficiently and effectively. In this paper we propose a Repulsive Self-adaptive Acceleration PSO (RSAPSO) variant that adaptively optimizes the velocity weights of every particle at every iteration. The velocity weights include the acceleration constants as well as the inertia weight that are responsible for the balance between exploration and exploitation. Our proposed RSAPSO variant optimizes the velocity weights that are then used to search for the optimal solution of the problem (e.g., benchmark function). We compare RSAPSO to four known adaptive PSO variants (decreasing weight PSO, time-varying acceleration coefficients PSO, guaranteed convergence PSO, and attractive and repulsive PSO) on twenty benchmark problems. The results show that RSAPSO achives better results compared to the known PSO variants on difficult optimization problems that require large numbers of function evaluations.

Accesso libero

A Data Mining Approach To Improve Military Demand Forecasting1

Pubblicato online: 01 Mar 2015
Pagine: 205 - 214

Astratto

Abstract

Accurately forecasting the demand of critical stocks is a vital step in the planning of a military operation. Demand prediction techniques, particularly autocorrelated models, have been adopted in the military planning process because a large number of stocks in the military inventory do not have consumption and usage rates per platform (e.g., ship). However, if an impending military operation is (significantly) different from prior campaigns then these prediction models may under or over estimate the demand of critical stocks leading to undesired operational impacts. To address this, we propose an approach to improve the accuracy of demand predictions by combining autocorrelated predictions with cross-correlated demands of items having known per-platform usage rates. We adopt a data mining approach using sequence rule mining to automatically determine cross-correlated demands by assessing frequently co-occurring usage patterns. Our experiments using a military operational planning system indicate a considerable reduction in the prediction errors across several categories of military supplies.

Accesso libero

Advanced Supervision Of Oil Wells Based On Soft Computing Techniques

Pubblicato online: 01 Mar 2015
Pagine: 215 - 225

Astratto

Abstract

In this work is presented a hybrid intelligent model of supervision based on Evolutionary Computation and Fuzzy Systems to improve the performance of the Oil Industry, which is used for Operational Diagnosis in petroleum wells based on the gas lift (GL) method. The model is composed by two parts: a Multilayer Fuzzy System to identify the operational scenarios in an oil well and a genetic algorithm to maximize the production of oil and minimize the flow of gas injection, based on the restrictions of the process and the operational cost of production.

Additionally, the first layers of the Multilayer Fuzzy System have specific tasks: the detection of operational failures, and the identification of the rate of gas that the well requires for production. In this way, our hybrid intelligent model implements supervision and control tasks.

0 Articoli
Accesso libero

GPFIS-Control: A Genetic Fuzzy System For Control Tasks

Pubblicato online: 01 Mar 2015
Pagine: 167 - 179

Astratto

Abstract

This work presents a Genetic Fuzzy Controller (GFC), called Genetic Programming Fuzzy Inference System for Control tasks (GPFIS-Control). It is based on Multi-Gene Genetic Programming, a variant of canonical Genetic Programming. The main characteristics and concepts of this approach are described, as well as its distinctions from other GFCs. Two benchmarks application of GPFIS-Control are considered: the Cart-Centering Problem and the Inverted Pendulum. In both cases results demonstrate the superiority and potentialities of GPFIS-Control in relation to other GFCs found in the literature.

Accesso libero

New Ranking Method For Fuzzy Numbers By Their Expansion Center

Pubblicato online: 01 Mar 2015
Pagine: 181 - 187

Astratto

Abstract

Based on the area between the curve of the membership function of a fuzzy number and the horizontal real axis, a characteristic as a new numerical index, called the expansion center, for fuzzy numbers is proposed. An intuitive and reasonable ranking method for fuzzy numbers based on this characteristic is also established. The new ranking method is applicable for decision making and data analysis in fuzz environments. An important criterion of the goodness for ranking fuzzy numbers, the geometric intuitivity, is also introduced. It guarantees coinciding with the natural ordering of the real numbers.

Accesso libero

Repulsive Self-Adaptive Acceleration Particle Swarm Optimization Approach

Pubblicato online: 01 Mar 2015
Pagine: 189 - 204

Astratto

Abstract

Adaptive Particle Swarm Optimization (PSO) variants have become popular in recent years. The main idea of these adaptive PSO variants is that they adaptively change their search behavior during the optimization process based on information gathered during the run. Adaptive PSO variants have shown to be able to solve a wide range of difficult optimization problems efficiently and effectively. In this paper we propose a Repulsive Self-adaptive Acceleration PSO (RSAPSO) variant that adaptively optimizes the velocity weights of every particle at every iteration. The velocity weights include the acceleration constants as well as the inertia weight that are responsible for the balance between exploration and exploitation. Our proposed RSAPSO variant optimizes the velocity weights that are then used to search for the optimal solution of the problem (e.g., benchmark function). We compare RSAPSO to four known adaptive PSO variants (decreasing weight PSO, time-varying acceleration coefficients PSO, guaranteed convergence PSO, and attractive and repulsive PSO) on twenty benchmark problems. The results show that RSAPSO achives better results compared to the known PSO variants on difficult optimization problems that require large numbers of function evaluations.

Accesso libero

A Data Mining Approach To Improve Military Demand Forecasting1

Pubblicato online: 01 Mar 2015
Pagine: 205 - 214

Astratto

Abstract

Accurately forecasting the demand of critical stocks is a vital step in the planning of a military operation. Demand prediction techniques, particularly autocorrelated models, have been adopted in the military planning process because a large number of stocks in the military inventory do not have consumption and usage rates per platform (e.g., ship). However, if an impending military operation is (significantly) different from prior campaigns then these prediction models may under or over estimate the demand of critical stocks leading to undesired operational impacts. To address this, we propose an approach to improve the accuracy of demand predictions by combining autocorrelated predictions with cross-correlated demands of items having known per-platform usage rates. We adopt a data mining approach using sequence rule mining to automatically determine cross-correlated demands by assessing frequently co-occurring usage patterns. Our experiments using a military operational planning system indicate a considerable reduction in the prediction errors across several categories of military supplies.

Accesso libero

Advanced Supervision Of Oil Wells Based On Soft Computing Techniques

Pubblicato online: 01 Mar 2015
Pagine: 215 - 225

Astratto

Abstract

In this work is presented a hybrid intelligent model of supervision based on Evolutionary Computation and Fuzzy Systems to improve the performance of the Oil Industry, which is used for Operational Diagnosis in petroleum wells based on the gas lift (GL) method. The model is composed by two parts: a Multilayer Fuzzy System to identify the operational scenarios in an oil well and a genetic algorithm to maximize the production of oil and minimize the flow of gas injection, based on the restrictions of the process and the operational cost of production.

Additionally, the first layers of the Multilayer Fuzzy System have specific tasks: the detection of operational failures, and the identification of the rate of gas that the well requires for production. In this way, our hybrid intelligent model implements supervision and control tasks.