The article presents our research on applications of fuzzy logic to reduce air pollution by DeNOx filters. The research aim is to manage data on Selective Catalytic Reduction (SCR) process responsible for reducing the emission of nitrogen oxide (NO) and nitrogen dioxide (NO2). Dedicated traditional Fuzzy Logic Systems (FLS) and Type-2 Fuzzy Logic Systems (T2FLS) are proposed with the use of new methods for learning fuzzy rules and with new types of fuzzy implications (the so-called ”engineering implications”). The obtained results are consistent with the results provided by experts. The main advantage of this paper is that type-2 fuzzy logic systems with ”engineering implications” and new methods of learning fuzzy rules give results closer to expert expectations than those based on traditional fuzzy logic systems. According to the literature review, no T2FLS were applied to manage DeNOx filter prior to the research presented here.
This paper presents FPGA and softcore CPU based solution for large datasets parallel core calculation using rough set methods. Architectures shown in this paper have been tested on two real datasets running presented solutions inside FPGA unit. Tested datasets had 1 000 to 10 000 000 objects. The same operations were performed in software implementation. Obtained results show the big acceleration in computation time using hardware supporting core generation in comparison to pure software implementation.
Multi-Agent Systems (MAS) have been widely used in many areas like modeling and simulation of complex phenomena, and distributed problem solving. Likewise, MAS have been used in cyber-security, to build more efficient Intrusion Detection Systems (IDS), namely Collaborative Intrusion Detection Systems (CIDS). This work presents a taxonomy for classifying the methods used to design intrusion detection systems, and how such methods were used alongside with MAS in order to build IDS that are deployed in distributed environments, resulting in the emergence of CIDS. The proposed taxonomy, consists of three parts: 1) general architecture of CIDS, 2) the used agent technology, and 3) decision techniques, in which used technologies are presented. The proposed taxonomy reviews and classifies the most relevant works in this topic and highlights open research issues in view of recent and emerging threats. Thus, this work provides a good insight regarding past, current, and future solutions for CIDS, and helps both researchers and professionals design more effective solutions.
Artificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper presents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to similar monitoring applications of other industrial dynamic objects.
A generalization of technique for establishing order preference by similarity to the ideal solution (TOPSIS) in the intuitionistic fuzzy setting based on the redefinition of intuitionistic fuzzy sets theory (A IFS) in the framework of Dempster-Shafer theory (DST) of evidence is proposed. The use of DST mathematical tools makes it possible to avoid a set of limitations and drawbacks revealed recently in the conventional Atanassov’s operational laws defined on intuitionistic fuzzy values, which may produce unacceptable results in the solution of multiple criteria decision-making problems. This boosts considerably the quality of aggregating operators used in the intuitionistic fuzzy TOPSIS method. It is pointed out that the conventional TOPSIS method may be naturally treated as a weighted sum of some modified local criteria. Because this aggregating approach does not always reflects well intentions of decision makers, two additional aggregating methods that cannot be defined in the framework of conventional A IFS based on local criteria weights being intuitionistic fuzzy values, are introduced. Having in mind that different aggregating methods generally produce different alternative rankings to obtain the compromise ranking, the method for aggregating of aggregation modes has been applied. Some examples are used to illustrate the validity and features of the proposed approach.
The article presents our research on applications of fuzzy logic to reduce air pollution by DeNOx filters. The research aim is to manage data on Selective Catalytic Reduction (SCR) process responsible for reducing the emission of nitrogen oxide (NO) and nitrogen dioxide (NO2). Dedicated traditional Fuzzy Logic Systems (FLS) and Type-2 Fuzzy Logic Systems (T2FLS) are proposed with the use of new methods for learning fuzzy rules and with new types of fuzzy implications (the so-called ”engineering implications”). The obtained results are consistent with the results provided by experts. The main advantage of this paper is that type-2 fuzzy logic systems with ”engineering implications” and new methods of learning fuzzy rules give results closer to expert expectations than those based on traditional fuzzy logic systems. According to the literature review, no T2FLS were applied to manage DeNOx filter prior to the research presented here.
This paper presents FPGA and softcore CPU based solution for large datasets parallel core calculation using rough set methods. Architectures shown in this paper have been tested on two real datasets running presented solutions inside FPGA unit. Tested datasets had 1 000 to 10 000 000 objects. The same operations were performed in software implementation. Obtained results show the big acceleration in computation time using hardware supporting core generation in comparison to pure software implementation.
Multi-Agent Systems (MAS) have been widely used in many areas like modeling and simulation of complex phenomena, and distributed problem solving. Likewise, MAS have been used in cyber-security, to build more efficient Intrusion Detection Systems (IDS), namely Collaborative Intrusion Detection Systems (CIDS). This work presents a taxonomy for classifying the methods used to design intrusion detection systems, and how such methods were used alongside with MAS in order to build IDS that are deployed in distributed environments, resulting in the emergence of CIDS. The proposed taxonomy, consists of three parts: 1) general architecture of CIDS, 2) the used agent technology, and 3) decision techniques, in which used technologies are presented. The proposed taxonomy reviews and classifies the most relevant works in this topic and highlights open research issues in view of recent and emerging threats. Thus, this work provides a good insight regarding past, current, and future solutions for CIDS, and helps both researchers and professionals design more effective solutions.
Artificial Intelligence algorithms are being increasingly used in industrial applications. Their important function is to support operation of diagnostic systems. This paper presents a new approach to the monitoring of a regenerative heat exchanger in a steam power plant, which is based on a specific use of the Recurrent Neural Network (RNN). The proposed approach was tested using real data. This approach can be easily adapted to similar monitoring applications of other industrial dynamic objects.
A generalization of technique for establishing order preference by similarity to the ideal solution (TOPSIS) in the intuitionistic fuzzy setting based on the redefinition of intuitionistic fuzzy sets theory (A IFS) in the framework of Dempster-Shafer theory (DST) of evidence is proposed. The use of DST mathematical tools makes it possible to avoid a set of limitations and drawbacks revealed recently in the conventional Atanassov’s operational laws defined on intuitionistic fuzzy values, which may produce unacceptable results in the solution of multiple criteria decision-making problems. This boosts considerably the quality of aggregating operators used in the intuitionistic fuzzy TOPSIS method. It is pointed out that the conventional TOPSIS method may be naturally treated as a weighted sum of some modified local criteria. Because this aggregating approach does not always reflects well intentions of decision makers, two additional aggregating methods that cannot be defined in the framework of conventional A IFS based on local criteria weights being intuitionistic fuzzy values, are introduced. Having in mind that different aggregating methods generally produce different alternative rankings to obtain the compromise ranking, the method for aggregating of aggregation modes has been applied. Some examples are used to illustrate the validity and features of the proposed approach.