INFORMAZIONI SU QUESTO ARTICOLO

Cita

Brear, E. M., Day, D. A., Smith, P. M. (2013). Iron: an essential micro-nutrient for the legume-rhizobium symbiosis. Frontiers Plant Sci., 4, 359.10.3389/fpls.2013.00359377231224062758 Search in Google Scholar

Burén, S., Rubio, L. M. (2018). State of the art in eukaryotic nitrogenase engineering. FEMS Microbiol. Lett., 365 (2), fnx274.10.1093/femsle/fnx274581249129240940 Search in Google Scholar

Chojnacka, K., Moustakas, K., Witek-Krowiak, A. (2020). Bio-based fertilizers: A practical approach towards circular economy. Biores. Technol., 295, 122223.10.1016/j.biortech.2019.12222331623921 Search in Google Scholar

Dubova, L., Alsiņa, I., Ruža, A., Šenberga, A. (2018). Impact of faba bean (Vicia faba L.) cultivation on soil microbiological activity. Agron. Res., 16 (5), 2016–2025. Search in Google Scholar

Francini, V. I., Azcon, R., Mendes, F. L., Aroca, R. (2010). Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought stressed legume hosts. J. Plant Physiol., 167, 614–619.10.1016/j.jplph.2009.11.01020044167 Search in Google Scholar

Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C., Moumita, M., Fujita, M. (2018). Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy, 8 (3), 31.10.3390/agronomy8030031 Search in Google Scholar

Jian, L., Bai, X., Zhang, H., Song, X., Li, Z. (2019). Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress. Peer J., 7, e6875.10.7717/peerj.6875651021731119081 Search in Google Scholar

Lindström, K., Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnol., 13 (5), 1314–1335.10.1111/1751-7915.13517741538031797528 Search in Google Scholar

Maphosa, Y., Jideani V.A. (2017). The role of legumes in human nutrition. In: Hueda, M. C. (Ed.). Functional Food: Improve Health through Adequate Food. doi:10.5772/intechopen.69127. https://www.intechopen.com/chapters/55808 (accessed 26.10.2021). Search in Google Scholar

Mederski, H. J., Hoff, D. J. (1958). Manganese deficiency in soybeans. In: Ohio Agricultural Experiment Station. Trace elements. Proceedings of the Conference. Academic Press, New York, 381, Oh32, pp. 99–108. Search in Google Scholar

Messina, M. J. (2016). Legumes and soybeans: Overview of their nutritional profiles and healtheffects. Asia Pacific J. Clin. Nutr., 25 (1), 1–17. Search in Google Scholar

Míguez-Montero, M. A., Valentine, A., Pérez-Fernández, M. A. (2020). Regulatory effect of phosphorus and nitrogen on nodulation and plant performance of leguminous shrubs, AoB Plants, 12 (1), plz047.10.1093/aobpla/plz047 Search in Google Scholar

Minta, M., Tsige, A. (2014). Effect on Rhizobium inoculation on herbage yield, quality, and nitrogen fixation of annual forage legumes on nitisols in central highlands of Ethiopia. Acta Adv. Agricult. Sci., 2 (10), 29–48. Search in Google Scholar

Mitran, T., Meena, R. S., Lal, R., Layek, J., Kumar, S., Datta, R. (2018). Role of soil phosphorus on legume production. In: Meena, R., Das, A., Yadav, G., Lal, R. (eds.). Legumes for Soil Health and Sustainable Management. Springer, Singapore, pp. 487–510.10.1007/978-981-13-0253-4_15 Search in Google Scholar

Mogobe, O., Mosepele, K., Masa, W. R. L. (2015). Essential mineral content of common fish speciesin Chanoga, Okavango Delta, Botswana. Afr. J. Food Sci., 9 (9), 480–486. Search in Google Scholar

Poole, P., Ramachandran, V., Terpolilli, J. (2018). Rhizobia: From saprophytes to endosymbionts. Nature Rev. Microbiol., 16 (5), 291–303.10.1038/nrmicro.2017.17129379215 Search in Google Scholar

Redondo-Nieto, M., Wilmot, A. R., El-Hamdaou, A., Bonilla, I., Bolanos, L. (2003). Relationship between boron and calcium in the N2-fixing legume rhizobia symbiosis. Plant Cell Environ., 26, 1905–1915.10.1046/j.1365-3040.2003.01107.x Search in Google Scholar

Šenberga, A., Dubova, L., Alsiņa, I., Strauta, L. (2017). Rhizobium sp. — a potential tool for improving protein content in peas and faba beans. Rural Sustain. Res., 37 (332), 2–9. Search in Google Scholar

Tena, W., Wolde-Meskel, E., Walley, F. (2016). Symbiotic efficiency of native and exotic rhizobium strains nodulating lentil (Lens culinaris Medik.) in soils of southern Ethiopia. Agronomy, 6 (1), 11. Search in Google Scholar

Tindwa, H., Semu, E., Msumali, G. P. (2014). Effects of elevated copper levels on biological nitrogen fixation and occurrence of rhizobia in a Tanzanian coffee-cropped soil. J. Agricult. Sci. Appl., 3 (1), 13–19.10.14511/jasa.2014.030103 Search in Google Scholar

Uyanöz, R., Karaca, Ü., Özaytekin, H. (2012). The effect of rhizobium inoculation and the application of zinc on micro and macro nutrient uptake in dry bean (Phaseolus vulgaris L.). Int. J. Ecosyst. Ecol. Sci. (IJEES), 2 (3), 201–208. Search in Google Scholar

Vardien, W., Mesjasz-Przybylowicz, J., Przybylowicz, W. J.,Wang Y., Steenkamp, E. T., Valentine, A. J. (2014). Nodules from Fynbos legume Virgilia divaricata have high functional plasticity under variable P supply levels. J. Plant Physiol., 171, 1732–1739.10.1016/j.jplph.2014.08.00525217716 Search in Google Scholar

Weisany, W., Raei, Y., Allahverdipoor, K. H., Ecology, A. (2013). Role of some of mineral nutrients in biological nitrogen fixation. Bull. Env. Pharmacol. Life Sci., 2 (4), 77–84 Search in Google Scholar

Zhang P., Zhang B., Jiao J., Dai S-Q., Chen W-X., Tian C-F. (2020). Modulation of symbiotic compatibility by rhizobial zinc starvation machinery. mBio 11 (1), e03193-19.10.1128/mBio.03193-19702913832071267 Search in Google Scholar

eISSN:
2255-890X
Lingua:
Inglese
Frequenza di pubblicazione:
6 volte all'anno
Argomenti della rivista:
General Interest, Mathematics, General Mathematics