[
1. Alexandre, E. M., Santos-Pedro, D. M., Brandão, T. R. & Silva, C. L. (2011). Influence of aqueous ozone, blanching and combined treatments on microbial load of red bell peppers, strawberries and watercress. Journal of Food Engineering, 105(2), 277–282. https://doi.org/10.1016/j.jfoodeng.2011.02.032.10.1016/j.jfoodeng.2011.02.032
]Search in Google Scholar
[
2. Bal, L. M., Meda, V., Naik, S. N. & Satya, S. (2011). Sea buckthorn berries: A potential source of valuable nutrients for nutraceuticals and cosmeceuticals. Food Research International, 44, 1718-1727. DOI:10.1016/j.foodres.2011.03.002
]Apri DOISearch in Google Scholar
[
3. Beveridge, T., Li, T. S. C., Oomah, B. D. & Smith, A. (1999). Sea buckthorn products: manufacture and composition. J Argic Food Chem., 47(9), 3480-8. https://doi.org/10.1021/jf981331m10.1021/jf981331m10552673
]Search in Google Scholar
[
4. Borczak, B., Sikora, E., Sikora, M., Kapusta-Duch, J., Kutyła-Kupidura, E. M. & Fołta, M. (2016). Nutritional properties of whole meal wheat-flour bread with an addition of selected wild grown fruits. Starch, 68, 675-682. DOI:10.1002/STAR.201500298
]Apri DOISearch in Google Scholar
[
5. Carbone, K. & Mencarelli, F. (2015). Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes. Food and Bioprocess Technology, 8(8), 1739–1749. https://doi.org/10.1007/s11947-015-1515-y10.1007/s11947-015-1515-y
]Search in Google Scholar
[
6. Chen, C., Zhang, H., Xiao, W., Yong, Z.-P. & Bai, N. (2007). High-performance liquid chromatographic fingerprint analysis for different origins of sea buckthorn berries. Journal of Chromatography A, 1154, 250-259. DOI: 10.1016/j.chroma.2007.03.09717449044
]Apri DOISearch in Google Scholar
[
7. Contigiani, E. V., Jaramillo-Sánchez, G., Castro, M. A., Gomez, P. L. & Alzamora, S. M. (2018). Postharvest quality of strawberry fruit (Fragaria x Ananassa Duch cv. Albion) as affected by ozone washing: fungal spoilage, mechanical properties, and structure. Food and Bioprocess Technology, 11(9), 1639–1650. https://doi.org/10.1007/s11947-018-2127-0.10.1007/s11947-018-2127-0
]Search in Google Scholar
[
8. Fu, L., Su, H., Li, R. & Cui, Y. (2014). Harvesting technologies for sea buckthorn fruit. Engineering in Agriculture, Enviroment and Food, 7 (2), 64-69. DOI:10.1016/j.eaef.2013.10.002
]Apri DOISearch in Google Scholar
[
9. Gorzelany, J., Belcar, J., Kuźniar, P., Niedbała, G. & Pentoś, K. (2022). Modelling of Mechanical Properties of Fresh and Stored Fruit of Large Cranberry Using Multiple Linear Regression and Machine Learning. Agriculture, 12(2), 200. https://doi.org/10.3390/agriculture1202020010.3390/agriculture12020200
]Search in Google Scholar
[
10. Guo, R., Guo, X., Li, T., Fu, X. & Liu R. H. (2017). Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of sea buckthorn (Hippophae rhamnoides L.) berries. Food Chemistry, 221, 997-1003. DOI: 10.1016/j.foodchem.2016.11.06327979305
]Apri DOISearch in Google Scholar
[
11. He, C., Zhang, G., Zhang, J., Zeng, Y. & Liu, J. (2017). Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry. The FASEB Journal, 31, 1929 – 1938. DOI: 10.1096/fj.201600974R28126735
]Apri DOISearch in Google Scholar
[
12. Jaramillo-Sánchez, G., Contigiani, E. V., Castro, M., Hodara, K., Alzamora, S., Loredo, A., & Nieto, A. (2019). Freshness maintenance of blueberries (Vaccinium corymbosum L.) during postharvest Rusing ozone in aqueous phase: microbiological, structure, and mechanical issues. Food and Bioprocess Technology, 12(12), 2136–2147. https://doi.org/10.1007/s11947-019-02358-z10.1007/s11947-019-02358-z
]Search in Google Scholar
[
13. Jaroszewska, A., Biel, W. & Telesiński, A. (2018). Effect of mycorrhization and variety on the chemical composition and antioxidant activity of sea buckthorn berries. J. Elem. 23(2), 673 – 684.
]Search in Google Scholar
[
14. Jeppsson, N. & Gao, X. (2000). Changes in the contents of kaempferol, quercetin an L-ascorbic acid in sea buckthorn berries during maturation. Agricultural and Food Science in Finland, 9, 17 – 22. DOI: https://doi.org/10.23986/afsci.565210.23986/afsci.5652
]Search in Google Scholar
[
15. Kawecki, Z., Szałkiewicz, M. & Bieniek, A. (2004). The common sea buckthorn – a valuable fruit. Journal of Fruit and Ornamental Plant Research, 12, 183-193,
]Search in Google Scholar
[
16. Khazaei, J. & Mann, D. D. (2004). Effect of Temperature and Loading Characteristics on Mechanical and Stress Relaxation Properties of Sea Buckthorn Berries. Part 2. Puncture Tests. Agricultural Engineering International: the CIOR Journal of Scientific Research and Development, Manuscript FP 03 010, Vol. VI.
]Search in Google Scholar
[
17. Lee, J. S. & Kim, J. M. (2020). Quality Characteristics and Antioxidant Properties of White Pan Bread Added with Sea Buckthorn (Hippophae rhamnoides L.) Berry Powder. Korean J. Food Nutr., 5, 473-482. https://doi.org/10.9799/ksfan.2020.33.5.473
]Search in Google Scholar
[
18. Ma, X., Yang, W., Kallio, H. & Yang, B. (2021). Health promoting properties and sensory characteristics of phytochemicals in berries and leaves of sea buckthorn (Hippophaë rhamnoides), Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2020.186992133412908
]Apri DOISearch in Google Scholar
[
19. Michalak, M., Podsędek, A. & Glinka, R. (2016). Potencjał przeciwutleniający oraz związki polifenolowe glikolowych ekstraktów z Hippophae rhamnoides L. Post. Fitoter. 17(1), 33-38.
]Search in Google Scholar
[
20. Mikulic-Petkovsek, M., Slatnar, A., Stampar, F. & Veberic, R. (2012). HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chemistry, 135 (4), 2138–2146. DOI: 10.1016/j.foodchem.2012.06.11522980782
]Apri DOISearch in Google Scholar
[
21. Nowakowska, M., Ochmian, I. & Mijowska, K. (2017). Assessment of the sea buckthorn growing in urban conditions – The quality of berries and leaves. Journal of Elementology, 22(2), 399 – 409. DOI: 10.5601/jelem.2016.21.2.1168
]Apri DOISearch in Google Scholar
[
22. Piechowiak, T., Antos, P., Józefczyk, R., Kosowski, P., Skrobacz, K., & Balawejder, M. (2019a). Impact of ozonation process on the microbiological contamination and antioxidant capacity of highbush blueberry Vaccinum corymbosum L. fruit during cold storage. Ozone Science & Engineering, 41(4), 376-385. https://doi.org/10.1080/01919512.2018.154092210.1080/01919512.2018.1540922
]Search in Google Scholar
[
23. Piechowiak, T., Antos, P., Kosowski, P., Skrobacz, K., Józefczyk, R. & Balawejder, M. (2019b). Impact of ozonation process on the microbiological and antioxidant status of raspberry (Rubus ideaeus L.) fruit during storage at room temperature. Agric. Food Sci., 28, 35–44. DOI: https://doi.org/10.23986/afsci.7029110.23986/afsci.70291
]Search in Google Scholar
[
24. Piłat, B. & Zadernowski, R. (2019). Rokitnik zwyczajny (Hippophae rhamnoides L.) w profilaktyce nowotworowej. Post. Fitoter. 20(2), 111-117. DOI: https://doi.org/10.25121/PF.2019.20.2.11110.25121/PF.2019.20.2.111
]Search in Google Scholar
[
25. Piłat, B. & Zadernowski, R. (2016). Owoce rokitnika (Hippophae rhamnoides L.) – bogate źródło związków biologicznie aktywnych. Post. Fitoter. 4, 298-306.
]Search in Google Scholar
[
26. Polska Norma PN-90/A-75101-03:1990. Fruit and vegetable preserves. Preparation of samples for physicochemical tests. Determination of dry matter content by the gravimetric method. Polski Komitet Normalizacyjny.
]Search in Google Scholar
[
27. Polska Norma PN-EN-12147:2000. Fruit and vegetable juices - Determination of titrable acidity. Polski Komitet Normalizacyjny.
]Search in Google Scholar
[
28. Polska Norma PN-A-04019:1998. Food products - Determination of vitamin C content. Polski Komitet Normalizacyjny.
]Search in Google Scholar
[
29. Pop, R. M., Weesepoel, Y., Socaciu, C., Pintea, A., Vincken, J.-P. & Gruppen, H. (2014). Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chemistry, 147, 1-9. DOI: 10.1016/j.foodchem.2013.09.08324206678
]Apri DOISearch in Google Scholar
[
30. Sadowska, U., Żabińska, A. & Mudryk, K. (2014). Values of the binding force of common sea buckthorn with a plant. Agricultural Engineering, 4(152), 213-220. DOI: http://dx.medra.org/10.14654/ir.2014.152.096
]Search in Google Scholar
[
31. Shahbazi, F., Sharafi, R., Moomevandi, S.J. & Daneshvar, M. (2015). Influence of foliar iron fertilization rate on the breakage susceptibility of wheat seeds. J. Plant Nutr., 38, 2204–2216, doi:10.1080/01904167.2015.1043379.
]Apri DOISearch in Google Scholar
[
32. Sytařová, I., Orsavová, J., Snopek, L., Mlček, J., Byczyński, Ł. & Mišurcová, L. (2020). Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chemistry, 310, 125784. DOI: 10.1016/j.foodchem.2019.12578431816534
]Apri DOISearch in Google Scholar
[
33. Szpunar-Krok, E., Kuźniar, P., Pawlak, R. & Migut, D. (2021). The effect of foliar fertilization on the resistance of pea (Pisum sativum L.) seeds to mechanical damage. Agronomy-Basel, 11, 189. https://doi.org/10.3390/agronomy1101018910.3390/agronomy11010189
]Search in Google Scholar
[
34. Teleszko, M., Wojdyło, A., Rudzińska, M., Oszmiański, J. & Golis, T. (2015). Analysis of lipophilic and hydrophilic bioactive compounds content in Sea buckthorn (Hippophaë rhamnoides L.) berries. J. Argic. Food Chem., 63(16), 4120-4129. DOI: 10.1021/acs.jafc.5b0056425893239
]Apri DOISearch in Google Scholar
[
35. Ulanowska, K., Skalski, B. & Olas, B. (2018). Rokitnik zwyczajny (Hippophae rhamnoides L.) jako źródło związków o aktywności przeciwnowotworowej i radioprotekcyjnej. Post. Hig. Med. Dośw., 72, 240-252. DOI: 10.5604/01.3001.0011.7481
]Apri DOISearch in Google Scholar
[
36. Zapałowska, A., Matłok, N., Zardzewiały, M., Piechowiak, T. & Balawejder, M. (2021). Effect of ozone treatment on the quality of sea buckhorn (Hippophae rhamnoides L.). Plants, 10 (5), 847. https://doi.org/10.3390/plants1005084710.3390/plants10050847814660133922199
]Search in Google Scholar
[
37. Żurek, N., Karatsai, O., Rędowicz, M. J., Kapusta, I. (2021). Polyphenolic Compounds of Crataegus Berry, Leaf, and Flower Extracts Affect Viability and Invasive Potential of Human Glioblastoma Cells. Molecules, 26, 9, 2656. DOI: 10.3390/molecules26092656812427434062758
]Apri DOISearch in Google Scholar