Accesso libero

Nutritional and Sustainability Aspects of Algae and Fungi Sources in Seafood Analogs – A Review

, , , ,  e   
24 apr 2025
INFORMAZIONI SU QUESTO ARTICOLO

Cita
Scarica la copertina

Aasim M., Bakhsh A., Sameeullah M., Karataş M., Khawar KM. (2018). Aquatic plants as human food. In: Global Perspectives on Underutilized Crops. Springer, pp. 165–187.Search in Google Scholar

Akazawa N., Alvial A., Baloi A.P., Blanc P.-P., Brummett R.E., Burgos J.M., Chamberlain G.C., Chamberlain G.W., Forster J., Hao N.V., Ibarra R., Josue L., Le K.V., Kibenge F., Lightner D.V., Loc T.H., Nikuli H.L., Omar I., Ralaimarindaza R.M, .St-Hilaire S., Towner R., Tung H., Villarreal M., Wyk P.M.V. (2014). Reducing disease risk in aquaculture. Agriculture and environmental services discussion paper no. 9, Washington, D.C.: World Bank Group.Search in Google Scholar

Akita Y., Kurihara T., Uehara M., Shiwa T., Iwai K. (2022). Impacts of overfishing and sedimentation on the feeding behavior and ecological function of herbivorous fishes in coral reefs. Mar. Ecol. Prog. Ser., 686: 141–157.Search in Google Scholar

Appenroth K.J., Sowjanya Sree K., Bog M., Ecker J., Seeliger C., Böhm V., Lorkowski S., Sommer K., Vetter W., Tolzin-Banasch K., Kirmse R., Leiterer M., Dawczynski C., Liebisch G., Jahreis G. (2018). Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Front. Chem., 6: 362603.Search in Google Scholar

Azoff M. (2021). Alternative seafood. State of the Industry Report. GFI. https://gfi.org/resource/alternative-seafood-state-of-the-industry-report/. Accessed May 25, 2024.Search in Google Scholar

Bhadury P., Mohammad B.T., Wright P.C. (2006). The current status of natural products from marine fungi and their potential as anti-infective agents. J. Ind. Microbiol. Biotechnol., 33: 325–325.Search in Google Scholar

Bizzaro G., Vatland A.K., Pampanin D.M. (2022). The One-Health approach in seaweed food production. Environ Int., 158: 106948.Search in Google Scholar

Bomkamp C., Skaalure S.C., Fernando G.F., Ben-Arye T., Swartz E.W., Specht E.A. (2022). Scaffolding biomaterials for 3D cultivated meat: Prospects and challenges. Advanced Sci., 9: 2102908.Search in Google Scholar

Boukid F., Baune M.C., Gagaoua M., Castellari M. (2022). Seafood alternatives: assessing the nutritional profile of products sold in the global market. Europ. Food Res. Technol., 248: 1777–1786.Search in Google Scholar

Boukid F., Kumari S., Khan Z.S. (2023). Plant protein-based foods, trend from a business perspective: market, consumers’ challenges, and opportunities in future. In: Novel Plant Protein Processing: Developing the Foods of the Future, CRC Press, pp. 267–282.Search in Google Scholar

Caballero S., Li Y.O., McClements D.J., Davidov-Pardo G. (2022). Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Crit. Rev. Food Sci. Nutr., 62: 8028–8044.Search in Google Scholar

Cai J., Lovatelli A., Aguilar-Manjarrez J., Cornish L., Dabbadie L., Desrochers A., Diffey S., Garrido Gamarro E., Geehan J., Hurtado A., Lucente D., Mair G., Miao W., Potin P., Przybyla C., Reantaso M., Roubach R., Tauati M., Yuan X. (2021). Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular, 1229, Rome, FAO.Search in Google Scholar

Calabon M.S., Jones E.B.G., Pang K.L., Abdel-Wahab M.A., Jin J., Devadatha B., Sadaba R.B., Apurillo C.C., Hyde K.D. (2023). Updates on the classification and numbers of marine fungi. Botanica Marina, 66: 213–238.Search in Google Scholar

Chan P.T., Matanjun P. (2017). Chemical composition and physico-chemical properties of tropical red seaweed, Gracilaria changii. Food Chem., 221: 302–310.Search in Google Scholar

Charoensiddhi S., Conlon M.A., Franco C.M.M., Zhang W. (2017). The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci. Technol., 70: 20–33.Search in Google Scholar

Chen G., Li Y., Wang J. (2021). Occurrence and ecological impact of microplastics in aquaculture ecosystems. Chemosphere, 274: 129989.Search in Google Scholar

Choudhury D., Singh S., Seah J.S.H., Yeo D.C.L., Tan L.P. (2020). Commercialization of plant-based meat alternatives. Trends Plant Sci., 25: 1055–1058.Search in Google Scholar

Clausen R., York R. (2008). Global biodiversity decline of marine and freshwater fish: A cross-national analysis of economic, demographic, and ecological influences. Soc. Sci. Res., 37: 1310–1320.Search in Google Scholar

Coleman B., Van Poucke C., Dewitte B., Ruttens A., Moerdijk-Poortvliet T., Latsos C., De Reu K., Blommaert L., Duquenne B., Timmermans K., van Houcke J., Muylaert K., Robbens J. (2022). Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods, 5: 100139.Search in Google Scholar

Denis C., Morançais M., Li M., Deniaud E., Gaudin P., Wielgosz-Collin G., Barnathan G., Jaouen P., Fleurence J. (2010). Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem., 119: 913–917.Search in Google Scholar

Deshmukh S.K., Prakash V., Ranjan N. (2018). Marine fungi: A source of potential anticancer compounds. Front. Microbiol., 8: 274495.Search in Google Scholar

Devi P., Shridhar M.P.D., D’Souza L., Naik C.G. (2006). Cellular fatty acid composition of marine-derived fungi. Indian. J. Mar. Sci., 35: 359–363.Search in Google Scholar

DeWeerdt S. (2020). Can aquaculture overcome its sustainability challenges? Nature, 588: S60–S60.Search in Google Scholar

FAO (2022). The State of World Fisheries and Aquaculture. Towards Blue Transformation. FAO, Rome.Search in Google Scholar

Farmery A.K., Gardner C., Jennings S., Green B.S., Watson R.A. (2017). Assessing the inclusion of seafood in the sustainable diet literature. Fish Fisher., 18: 607–618.Search in Google Scholar

Freitas J., Vaz-Pires P., Câmara J.S. (2020). From aquaculture production to consumption: Freshness, safety, traceability and authentication, the four pillars of quality. Aquaculture, 518: 734857.Search in Google Scholar

García-Poza S., Leandro A., Cotas C., Cotas J., Marques J.C., Pereira L., Gonçalves A.M.M. (2020). The evolution road of seaweed aquaculture: cultivation technologies and the industry 4.0. Int. J. Environ. Res. Public Health., 17: 6528.Search in Google Scholar

Ghazani S.M., Marangoni A.G. (2022). Microbial lipids for foods. Trends Food Sci. Technol., 119: 593–607.Search in Google Scholar

Gomes N.G.M., Lefranc F., Kijjoa A., Kiss R. (2015). Can some marine-derived fungal metabolites become actual anticancer agents? Mar. Drugs., 13: 3950–3991.Search in Google Scholar

Gómez S., Maynou F. (2021). Alternative seafood marketing systems foster transformative processes in Mediterranean fisheries. Mar. Policy., 127: 104432.Search in Google Scholar

Hao H., Fu M., Yan R., He B., Li M., Liu Q., Cai Y., Zhang X., Huang R. (2019). Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. Food Agric. Immunol., 30: 937–954.Search in Google Scholar

Hibbert L.E., Qian Y., Smith H.K., Milner S., Katz E., Kliebenstein D.J., Taylor G. (2023). Making watercress (Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. Front Plant Sci., 14: 1279823.Search in Google Scholar

Inoue N., Tsuge K., Yanagita T., Oikawa A., Nagao K. (2024). Time-course metabolomic analysis: Production of betaine structural analogs by fungal fermentation of seaweed. Metabolites, 14: 201.Search in Google Scholar

Issifu I., Alava J.J., Lam V.W.Y., Sumaila U.R. (2022). Impact of ocean warming, overfishing and mercury on European fisheries: A risk assessment and policy solution framework. Front. Mar. Sci., 8: 770805.Search in Google Scholar

James R., Vignesh S., Muthukumar K. (2012). Marine drugs development and social implication. Coastal environments: Focus on Asian regions. Springer, Dordrecht, pp. 219–237.Search in Google Scholar

Karwacka M., Ciurzyńska A., Lenart A., Janowicz M. (2020). Sustainable development in the agri-food sector in terms of the carbon footprint: A review. Sustainability, 12: 6463.Search in Google Scholar

Kassam A. (2021). The rice of the sea: how a tiny grain could change the way humanity eats. Plants. The Guardian. https://www.the-guardian.com/environment/2021/apr/09/sea-rice-eelgrass-marine-grain-chef-angel-leon-marsh-climate-crisis. Accessed May 25, 2024.Search in Google Scholar

Kaur S., Reddersen B. (2022). Algae based solutions for polluted environments to restore ecosphere equilibrium. Int. J. Environ. Pollut. Remediat., 10: 09–18.Search in Google Scholar

Kazir M., Livney Y.D. (2021). Plant-based seafood analogs. Molecules, 26: 1559.Search in Google Scholar

Khan A.S. (2012). Understanding global supply chains and seafood markets for the rebuilding prospects of Northern Gulf cod fisheries. Sustainability, 4: 2946–2969.Search in Google Scholar

Kinley R.D., Martinez-Fernandez G., Matthews M.K., de Nys R., Magnusson M., Tomkins N.W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean Prod., 259: 120836.Search in Google Scholar

Koch J., Frommeyer B., Schewe G. (2020). Online shopping motives during the COVID-19 pandemic – Lessons from the crisis. Sustainability, 12: 10247.Search in Google Scholar

Koehn J.Z., Allison E.H., Golden C.D., Hilborn R. (2022). The role of seafood in sustainable diets. Environ. Res. Lett., 17: 035003.Search in Google Scholar

Kumari P., Kumar M., Gupta V., Reddy C.R.K., Jha B. (2010). Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem., 120: 749–757.Search in Google Scholar

Lankatillake C., Dias D., Huynh T. (2023). Plant-based imitated fish. In: Engineering Plant-Based Food Systems. Academic Press, pp. 185–197.Search in Google Scholar

Lee H., Kim D., Choi K.H., Lee S., Jo M., Chun S.Y., Son Y., Lee J.H., Kim K., Lee T.B., Keum J., Yoon M., Cha H.J., Rho S., Cho S.C., Lee Y.S. (2024). Animal-free scaffold from brown algae provides a three-dimensional cell growth and differentiation environment for steak-like cultivated meat. Food Hydrocoll., 152: 109944.Search in Google Scholar

Li L., Teixeira D.S., Jaime A., Cao B. (2007). Aquatic vegetable production and research in China. The Asian and Australasian Journal of Plant Science and Biotechnology. Global Science Books, 1: 37–42.Search in Google Scholar

Li Y., Xiang N., Zhu Y., Yang M., Shi C., Tang Y., Sun W., Sheng K., Liu D., Zhang X. (2024). Blue source-based food alternative proteins: Exploring aquatic plant-based and cell-based sources for sustainable nutrition. Trend. Food Sci. Technol., 147: 104439.Search in Google Scholar

Lorenzo J.M., Agregán R., Munekata P.E.S., Franco D., Carballo J., Şahin S., Lacomba R., Barba F.J. (2017). Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs, 15: 360.Search in Google Scholar

Mæhre H.K., Malde M.K., Eilertsen K.E., Elvevoll E.O. (2014). Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric., 94: 3281–3290.Search in Google Scholar

Mahdy A., Mendez L., Ballesteros M., González-Fernández C. (2014). Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers. Manag., 85: 551–557.Search in Google Scholar

Mahdy A., Mendez L., Tomás-Pejó E., del Mar Morales M., Ballesteros M., González-Fernández C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. J. Chem. Technol. Biotechnol., 91: 1299–1305.Search in Google Scholar

Mahmud N., Valizadeh S., Oyom W., Tahergorabi R. (2024). Exploring functional plant-based seafood: Ingredients and health implications. Trend. Food Sci. Technol., 144: 104346.Search in Google Scholar

Malafronte L., Yilmaz-Turan S., Krona A., Martinez-Sanz M., Vilaplana F., Lopez-Sanchez P. (2021). Macroalgae suspensions prepared by physical treatments: Effect of polysaccharide composition and microstructure on the rheological properties. Food Hydrocoll., 120: 106989.Search in Google Scholar

Marwaha N., Beveridge M.C., Phillips M.J., Komugisha Basiita R., Boso D., Yee Chan C., Ahmed Kabir K., Sulser T.B., Wiebe K. (2020). Alternative seafood: Assessing food, nutrition and livelihood futures of plant-based and cell-based seafood. WorldFish, Penang, Malaysia.Search in Google Scholar

Meng W., Mu T., Sun H., Garcia-Vaquero M. (2022). Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. Algal Res., 64: 102683.Search in Google Scholar

Mia M.M., Hasan M., Hasan M.A., Shahid Hossain M.A., Islam M.M., Hasan Saraf M.S. (2021). Discovery of mushroom-derived bioactive compound’s draggability against nsP3 macro domain, nsP2 protease and envelope glycoprotein of Chikungunya virus: An in silico approach. Inform. Med. Unlocked., 26: 100753.Search in Google Scholar

Mizuta D.D. (2024). Dietary shifts and the need for increased sustainability approaches in the global aquaculture seafood system. Front Sustain Food Syst., 8: 1356492.Search in Google Scholar

Montero L., Sánchez-Camargo A. del P., Ibáñez E., Gilbert-López B. (2017). Phenolic compounds from edible algae: Bioactivity and health benefits. Curr. Med. Chem., 25: 4808–4826.Search in Google Scholar

Mordor Intelligence (2024). Europe Seafood Market Size & Share Analysis – Industry Research Report. Growth Trends. https://www.mordorintelligence.com/industry-reports/europe-seafood-market. Accessed May 25, 2024.Search in Google Scholar

Nagao K., Inoue N., Tsuge K., Oikawa A., Kayashima T., Yanagita T. (2022). Dried and fermented powders of edible algae (Neopyropia yezoensis) attenuate hepatic steatosis in obese mice. Molecules, 27: 2640.Search in Google Scholar

Nguyen V.T., Ueng J.P., Tsai G.J. (2011). Proximate composition, total phenolic content, and antioxidant activity of seagrape (Caulerpa lentillifera). J. Food Sci., 76: C950–C958.Search in Google Scholar

Nowacka M., Trusinska M., Chraniuk P., Piatkowska J., Pakulska A., Wisniewska K., Wierzbicka A., Rybak K., Pobiega K. (2023). Plant-based fish analogs – a review. Appl. Sci., 13: 4509.Search in Google Scholar

Olsen S.O., Skallerud K., Heide M. (2021). Consumers’ evaluation and intention to buy traditional seafood: The role of vintage, uniqueness, nostalgia and involvement in luxury. Appetite, 157: 104994.Search in Google Scholar

On-Nom N., Promdang P., Inthachat W., Kanoongon P., Sahasakul Y., Chupeerach C., Suttisansanee U., Temviriyanukul P. (2023). Wolffia globosa-based nutritious snack formulation with high protein and dietary fiber contents. Foods, 12: 2647.Search in Google Scholar

Oucif H., Benaissa M., Ali Mehidi S., Prego R., Aubourg S.P., Abi-Ayad S.M.E.A. (2020). Chemical composition and nutritional value of different seaweeds from the west Algerian coast. J. Aquat. Food Prod. Technol., 29: 90–104.Search in Google Scholar

Peñalver R., Lorenzo J.M., Ros G., Amarowicz R., Pateiro M., Nieto G. (2020). Seaweeds as a functional ingredient for a healthy diet. Mar. Drugs, 18: 301.Search in Google Scholar

Pereira L., Cotas J., Gonçalves A.M. (2024). Seaweed proteins: A step towards sustainability? Nutrients, 16: 1123.Search in Google Scholar

Pérez-Lloréns J.L., Brun F.G. (2023). “Sea rice”: From traditional culinary customs to sustainable crop for high-end gastronomy? Int. J. Gastron. Food Sci., 34: 100814.Search in Google Scholar

Pirwitz K., Rihko-Struckmann L., Sundmacher K. (2016). Valorization of the aqueous phase obtained from hydrothermally treated Dunaliella salina remnant biomass. Biores. Technol., 219: 64–71.Search in Google Scholar

Priyadarshani I., Rath B. (2012). Commercial and industrial applications of micro algae-A review. J. Algal Biomass Util., 3: 89–100. Purcell-Meyerink D., Packer M.A., Wheeler T.T., Hayes M., FrancoSearch in Google Scholar

Ruiz D., López-Pedrouso M., Lorenzo J.M. (2021). Aquaculture production of the brown seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in food and pharmaceuticals. Molecules, 26: 1306.Search in Google Scholar

Rodrigues D., Freitas A.C., Pereira L., Rocha-Santos T.A.P., Vasconcelos M.W., Roriz M., Rodríguez-Alcalá L.M., Gomes A.M.P., Duarte A.C. (2015). Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem., 183: 197–207.Search in Google Scholar

Rohani-Ghadikolaei K., Abdulalian E., Ng W.K. (2012). Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J. Food Sci. Technol., 49: 774–780.Search in Google Scholar

Seghiri R., Kharbach M., Essamri A. (2019). Functional composition, nutritional properties, and biological activities of Moroccan Spirulina microalga. J. Food Qual., 2019: 1–11.Search in Google Scholar

Stedt K., Trigo J.P., Steinhagen S., Nylund G.M., Forghani B., Pavia H., Undeland I. (2022). Cultivation of seaweeds in food production process waters: Evaluation of growth and crude protein content. Algal. Res., 63: 102647.Search in Google Scholar

Tarver T. (2016). Palatable proteins for complex palates. Food Technol. Magaz., 70: 32–39.Search in Google Scholar

Tibbetts S.M., Milley J.E., Lall S.P. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol., 27: 1109–1119.Search in Google Scholar

Uribe E., Vega-Gálvez A., García V., Pastén A., López J., Goñi G. (2019). Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J. Appl. Phycol., 31: 1967–1979.Search in Google Scholar

Véliz K., Toledo P., Araya M., Gómez M.F., Villalobos V., Tala F. (2023). Chemical composition and heavy metal content of Chilean seaweeds: Potential applications of seaweed meal as food and feed ingredients. Food Chem., 398: 133866.Search in Google Scholar

Wassmann B., Hartmann C., Siegrist M. (2024). Novel microalgae-based foods: What influences Singaporean consumers’ acceptance? Food. Qual. Prefer., 113: 105068.Search in Google Scholar

Xu J., Liao W., Liu Y., Guo Y., Jiang S., Zhao C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Prod. Process. Nutr., 5: 1–21.Search in Google Scholar

Zhang C., Tang X., Sheng L., Yang X. (2016). Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chem., 18: 2542–2553.Search in Google Scholar

Zhang Z., Kobata K., Pham H., Kos D., Tan Y., Lu J., Mcclements D.J. (2022). Production of plant-based seafood: scallop analogs formed by enzymatic gelation of pea protein-pectin mixtures. Foods, 11: 851.Search in Google Scholar

Zhao L., Khang H.M., Du J. (2024). Incorporation of microalgae (Nannochloropsis oceanica) into plant-based fishcake analogue: Physical property characterisation and in vitro digestion analysis. Food Hydrocoll., 146: 109212.Search in Google Scholar

Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Scienze biologiche, Biotecnologia, Zoologia, Medicina, Medicina veterinaria