Zitieren

Aasim M., Bakhsh A., Sameeullah M., Karataş M., Khawar KM. (2018). Aquatic Plants as Human Food. Global Perspectives on Underutilized Crops., 165–187. Search in Google Scholar

Akazawa N., Alvial A., Pierre-Philippe Blanc., George W. Chamberlain., José Miguel Burgos., John Forster, Tung Hoang, Le Van Khoa, Rolando Ibarra, Fred Kibenge, Donald V. Lightner, Hamisi Lussian Nikuli, Nguyen Van Hao, Isabel Omar, Luc Ralaimarindaza, Melba B. Reantaso, Richard (Dick) Towner, Tran Huu Loc, Peter M. Van Wyk, Marcos Villarreal. (2014). Reducing Disease Risk in Aquaculture. Washington DC. Search in Google Scholar

Akita Y., Kurihara T., Uehara M., Shiwa T., Iwai K. (2022). Impacts of overfishing and sedimentation on the feeding behavior and ecological function of herbivorous fishes in coral reefs. Mar. Ecol. Prog. Ser., 686: 141–157. Search in Google Scholar

Appenroth KJ., Sowjanya Sree K., Bog M., Ecker J., Seeliger C., Böhm V., Lorkowski S., Sommer K., Vetter W., Tolzin-Banasch K., Kirmse R., Leiterer M., Dawczynski C., Liebisch G., Jahreis G. (2018). Nutritional value of the duckweed species of the Genus Wolffia (Lemnaceae) as human food. Front. Chem., 6: 362603. Search in Google Scholar

Arthur James R., Vignesh S., Muthukumar K. (2012). Marine Drugs Development and Social Implication. Coastal Environments: Focus on Asian Regions, Springer, Dordrecht, 219–237 pp. Search in Google Scholar

Azoff M. (2021). Alternative seafood. State of the Industry Report. GFI. https://gfi.org/resource/alternative-seafood-state-of-the-industry-report/. Accessed May 25, 2024. Search in Google Scholar

Bhadury P., Mohammad BT., Wright PC. (2006). The current status of natural products from marine fungi and their potential as anti-infective agents. J. Ind. Microbiol. Biotechnol., 33: 325–325. Search in Google Scholar

Bizzaro G., Vatland AK., Pampanin DM. (2022). The One-Health approach in seaweed food production. Environ Int., 158: 106948. Search in Google Scholar

Bomkamp C., Skaalure SC., Fernando GF., Ben-Arye T., Swartz EW., Specht EA. (2022). Scaffolding Biomaterials for 3D Cultivated Meat: Prospects and Challenges. Advanced Science., 9: 2102908. Search in Google Scholar

Boukid F., Baune MC., Gagaoua M., Castellari M. (2022). Seafood alternatives: assessing the nutritional profile of products sold in the global market. European Food Research and Technology., 248: 1777–1786. Search in Google Scholar

Boukid F, Kumari S, Khan ZS. (2023). Plant Protein-Based Foods, Trend from a Business Perspective: Market, Consumers’ Challenges, and Opportunities in Future. Novel Plant Protein Processing: Developing the Foods of the Future, CRC Press, 267–282 pp. Search in Google Scholar

Caballero S., Li YO., McClements DJ., Davidov-Pardo G. (2022). Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Crit. Rev. Food Sci. Nutr., 62: 8028–8044. Search in Google Scholar

Cai J., Lovatelli A., Aguilar-Manjarrez J., Cornish L., Dabbadie L., Desrochers A., Diffey S., Garrido Gamarro E., Geehan J., Hurtado A., Lucente D., Mair G., Miao W., Potin P., Przybyla C., Reantaso M., Roubach R., Tauati M., Yuan X., Aguilar-Manjarrez J., Cornish L., Dabbadie L., Desrochers A., Diffey S., Garrido Gamarro E., Geehan J., Hurtado A., Lucente D., Mair G., Miao W., Potin P., Przybyla C., Reantaso M., Roubach R., Tauati M., Yuan X. (2021). Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development. FAO Fisheries and Aquaculture Circular. Search in Google Scholar

Calabon MS., Jones EBG., Pang KL., Abdel-Wahab MA., Jin J., Devadatha B., Sadaba RB., Apurillo CC., Hyde KD. (2023). Updates on the classification and numbers of marine fungi. Botanica Marina., 66: 213–238. Search in Google Scholar

Chan PT., Matanjun P. (2017). Chemical composition and physicochemical properties of tropical red seaweed, Gracilaria changii. Food Chem., 221: 302–310. Search in Google Scholar

Charoensiddhi S., Conlon MA., Franco CMM., Zhang W. (2017). The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci. Technol., 70: 20–33. Search in Google Scholar

Chen G., Li Y., Wang J. (2021). Occurrence and ecological impact of microplastics in aquaculture ecosystems. Chemosphere., 274: 129989. Search in Google Scholar

Choudhury D., Singh S., Seah JSH., Yeo DCL., Tan LP. (2020). Commercialization of Plant-Based Meat Alternatives. Trends Plant Sci., 25: 1055–1058. Search in Google Scholar

Clausen R., York R. (2008). Global biodiversity decline of marine and freshwater fish: A cross-national analysis of economic, demographic, and ecological influences. Soc. Sci. Res., 37: 1310–1320. Search in Google Scholar

Coleman B., Van Poucke C., Dewitte B., Ruttens A., Moerdijk-Poortvliet T., Latsos C., De Reu K., Blommaert L., Duquenne B., Timmermans K., van Houcke J., Muylaert K., Robbens J. (2022). Potential of microalgae as flavoring agents for plant-based seafood alternatives. Future Foods., 5: 100139. Search in Google Scholar

Denis C., Morançais M., Li M., Deniaud E., Gaudin P., Wielgosz-Collin G., Barnathan G., Jaouen P., Fleurence J. (2010). Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem., 119: 913–917. Search in Google Scholar

Deshmukh SK., Prakash V., Ranjan N. (2018). Marine fungi: A source of potential anticancer compounds. Front. Microbiol., 8: 274495. Search in Google Scholar

Devi P., Shridhar MPD., D’Souza L., Naik CG. (2006). Cellular fatty acid composition of marine-derived fungi. Indian. J. Mar. Sci., 35: 359–363. Search in Google Scholar

DeWeerdt S. (2020). Can aquaculture overcome its sustainability challenges? Nature., 588: S60–S60. Search in Google Scholar

FAO. (2022). The State of World Fisheries and Aquaculture. Towards Blue Transformation. FAO., Rome. Search in Google Scholar

Farmery AK., Gardner C., Jennings S., Green BS., Watson RA. (2017). Assessing the inclusion of seafood in the sustainable diet literature. Fish and Fisheries., 18: 607–618. Search in Google Scholar

Freitas J, . Vaz-Pires P., Câmara JS. (2020). From aquaculture production to consumption: Freshness, safety, traceability and authentication, the four pillars of quality. Aquaculture., 518: 734857. Search in Google Scholar

García-Poza S., Leandro A., Cotas C., Cotas J., Marques JC., Pereira L., Gonçalves AMM. (2020). The Evolution Road of Seaweed Aquaculture: Cultivation Technologies and the Industry 4.0. Int. J. Environ. Res. Public Health., 17: 6528. Search in Google Scholar

Ghazani SM., Marangoni AG. (2022). Microbial lipids for foods. Trends Food Sci. Technol., 119: 593–607. Search in Google Scholar

Gomes NGM., Lefranc F., Kijjoa A., Kiss R. (2015). Can Some Marine-Derived Fungal Metabolites Become Actual Anticancer Agents? Mar. Drugs., 13: 3950–3991. Search in Google Scholar

Gómez S., Maynou F. (2021). Alternative seafood marketing systems foster transformative processes in Mediterranean fisheries. Mar. Policy., 127: 104432. Search in Google Scholar

Hao H., Fu M., Yan R., He B., Li M., Liu Q., Cai Y., Zhang X., Huang R. (2019). Chemical composition and immunostimulatory properties of green alga Caulerpa racemosa var peltata. Food Agric. Immunol., 30: 937–954. Search in Google Scholar

Hibbert LE., Qian Y., Smith HK., Milner S., Katz E., Kliebenstein DJ., Taylor G. (2023). Making watercress (Nasturtium officinale) cropping sustainable: genomic insights into enhanced phosphorus use efficiency in an aquatic crop. Front Plant Sci., 14: 1279823. Search in Google Scholar

Inoue N., Tsuge K., Yanagita T., Oikawa A., Nagao K. (2024). Time-Course Metabolomic Analysis: Production of Betaine Structural Analogs by Fungal Fermentation of Seaweed. Metabolites., 14: 201. Search in Google Scholar

Issifu I., Alava JJ., Lam VWY., Sumaila UR. (2022). Impact of Ocean Warming, Overfishing and Mercury on European Fisheries: A Risk Assessment and Policy Solution Framework. Front. Mar. Sci., 8: 770805. Search in Google Scholar

Karwacka M., Ciurzyńska A., Lenart A., Janowicz M. (2020). Sustainable Development in the Agri-Food Sector in Terms of the Carbon Footprint: A Review. Sustainability., 12: 6463. Search in Google Scholar

Kassam A. (2021). The rice of the sea: how a tiny grain could change the way humanity eats. Plants. The Guardian. https://www.theguardian.com/environment/2021/apr/09/sea-rice-eelgrass-marine-grain-chef-angel-leon-marsh-climate-crisis. Accessed May 25, 2024. Search in Google Scholar

Kaur S., Reddersen B. (2022). Algae Based Solutions for Polluted Environments to Restore Ecosphere Equilibrium. International Journal of Environmental Pollution and Remediation., 10: 09–18. Search in Google Scholar

Kazir M., Livney YD. (2021). Plant-Based Seafood Analogs. Molecules., 26: 1559. Search in Google Scholar

Khan AS. (2012). Understanding Global Supply Chains and Seafood Markets for the Rebuilding Prospects of Northern Gulf Cod Fisheries. Sustainability., 4: 2946–2969. Search in Google Scholar

Kinley RD., Martinez-Fernandez G., Matthews MK., de Nys R., Magnusson M., Tomkins NW. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean Prod., 259: 120836. Search in Google Scholar

Koch J, Frommeyer B, Schewe G. (2020). Online Shopping Motives during the COVID-19 Pandemic—Lessons from the Crisis. Sustainability, 12: 10247. Search in Google Scholar

Koehn JZ., Allison EH., Golden CD., Hilborn R. (2022). The role of seafood in sustainable diets. Environmental Research Letters, 17: 035003. Search in Google Scholar

Kumari P., Kumar M., Gupta V., Reddy CRK., Jha B. (2010). Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem., 120: 749–757. Search in Google Scholar

Lankatillake C., Dias D., Huynh T. (2023). Plant-based imitated fish. Engineering Plant-Based Food Systems. Academic Press, 185–197 pp. Search in Google Scholar

Lee H., Kim D., Choi KH., Lee S., Jo M., Chun SY., Son Y., Lee JH., Kim K., Lee TB., Keum J., Yoon M., Cha HJ., Rho S., Cho SC., Lee YS. (2024). Animal-free scaffold from brown algae provides a three-dimensional cell growth and differentiation environment for steak-like cultivated meat. Food Hydrocoll., 152: 109944. Search in Google Scholar

Li L, Teixeira DS, Jaime A, Cao B. (2007). Aquatic Vegetable Production and Research in China.The Asian and Australasian Journal of Plant Science and Biotechnology. Global Science Books, 1: 37-42. Search in Google Scholar

Li Y., Xiang N., Zhu Y., Yang M., Shi C., Tang Y., Sun W., Sheng K., Liu D., Zhang X. (2024). Blue source-based food alternative proteins: Exploring aquatic plant-based and cell-based sources for sustainable nutrition. Trends Food Sci. Technol., 147: 104439. Search in Google Scholar

Lorenzo JM., Agregán R., Munekata PES., Franco D., Carballo J., Şahin S., Lacomba R., Barba FJ. (2017). Proximate Composition and Nutritional Value of Three Macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs. 15: 360. Search in Google Scholar

Mæhre HK., Malde MK., Eilertsen KE., Elvevoll EO. (2014). Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric., 94: 3281–3290. Search in Google Scholar

Mahdy A., Mendez L., Ballesteros M., González-Fernández C. (2014). Enhanced methane production of Chlorella vulgaris and Chlamydomonas reinhardtii by hydrolytic enzymes addition. Energy Convers. Manag., 85: 551–557. Search in Google Scholar

Mahdy A., Mendez L., Tomás-Pejó E., del Mar Morales M., Ballesteros M., González-Fernández C. (2016). Influence of enzymatic hydrolysis on the biochemical methane potential of Chlorella vulgaris and Scenedesmus sp. Journal of Chemical Technology & Biotechnology., 91: 1299–1305. Search in Google Scholar

Mahmud N., Valizadeh S., Oyom W., Tahergorabi R. (2024). Exploring functional plant-based seafood: Ingredients and health implications. Trends Food Sci. Technol., 144: 104346. Search in Google Scholar

Malafronte L., Yilmaz-Turan S., Krona A., Martinez-Sanz M., Vilaplana F., Lopez-Sanchez P. (2021). Macroalgae suspensions prepared by physical treatments: Effect of polysaccharide composition and microstructure on the rheological properties. Food Hydrocoll., 120: 106989. Search in Google Scholar

Marwaha N., M Beveridge MC., Phillips MJ., Komugisha Basiita R., Boso D., Yee Chan C., Ahmed Kabir K., Sulser TB., Wiebe K. (2020). Alternative seafood: Assessing food, nutrition and livelihood futures of plant-based and cell-based seafood. WorldFish, Penang, Malaysia. Search in Google Scholar

Meng W., Mu T., Sun H., Garcia-Vaquero M. (2022). Evaluation of the chemical composition and nutritional potential of brown macroalgae commercialised in China. Algal Res., 64: 102683. Search in Google Scholar

Mia MM., Hasan M., Hasan MA., Shahid Hossain MA., Islam MM., Hasan Saraf MS. (2021). Discovery of mushroom-derived bioactive compound’s draggability against nsP3 macro domain, nsP2 protease and envelope glycoprotein of Chikungunya virus: An in silico approach. Inform. Med. Unlocked., 26: 100753. Search in Google Scholar

Mizuta DD. (2024). Dietary shifts and the need for increased sustainability approaches in the global aquaculture seafood system. Front Sustain Food Syst., 8: 1356492. Search in Google Scholar

Montero L., Sánchez-Camargo A del P., Ibáñez E., Gilbert-López B. (2017). Phenolic Compounds from Edible Algae: Bioactivity and Health Benefits. Curr. Med. Chem., 25: 4808–4826. Search in Google Scholar

Mordor Intelligence. (2024). Europe Seafood Market Size & Share Analysis - Industry Research Report. Growth Trends. https://www.mordorintelligence.com/industry-reports/europe-seafood-market. Accessed May 25, 2024. Search in Google Scholar

Nagao K., Inoue N., Tsuge K., Oikawa A., Kayashima T., Yanagita T. (2022). Dried and Fermented Powders of Edible Algae (Neopyropia yezoensis) Attenuate Hepatic Steatosis in Obese Mice. Molecules., 27: 2640. Search in Google Scholar

Nguyen VT., Ueng JP., Tsai GJ. (2011). Proximate Composition, Total Phenolic Content, and Antioxidant Activity of Seagrape (Caulerpa lentillifera). J. Food Sci., 76: C950–C958. Search in Google Scholar

Nowacka M., Trusinska M., Chraniuk P., Piatkowska J., Pakulska A., Wisniewska K., Wierzbicka A., Rybak K., Pobiega K. (2023). Plant-Based Fish Analogs –A Review. Appl. Sci., 13: 4509. Search in Google Scholar

Olsen SO., Skallerud K., Heide M. (2021). Consumers’ evaluation and intention to buy traditional seafood: The role of vintage, uniqueness, nostalgia and involvement in luxury. Appetite., 157: 104994. Search in Google Scholar

On-Nom N., Promdang P., Inthachat W., Kanoongon P., Sahasakul Y., Chupeerach C., Suttisansanee U., Temviriyanukul P. (2023). Wolffia globosa-Based Nutritious Snack Formulation with High Protein and Dietary Fiber Contents. Foods., 12: 2647. Search in Google Scholar

Oucif H., Benaissa M., Ali Mehidi S., Prego R., Aubourg SP., Abi-Ayad SMEA. (2020). Chemical Composition and Nutritional Value of Different Seaweeds from the West Algerian Coast. Journal of Aquatic Food Product Technology., 29: 90–104. Search in Google Scholar

Peñalver R., Lorenzo JM., Ros G., Amarowicz R., Pateiro M., Nieto G. (2020). Seaweeds as a Functional Ingredient for a Healthy Diet. Mar. Drugs., 18: 301. Search in Google Scholar

Pereira L., Cotas J., Gonçalves AM. (2024). Seaweed Proteins: A Step towards Sustainability? Nutrients., 16: 1123. Search in Google Scholar

Pérez-Lloréns JL., Brun FG. (2023). “Sea rice”: From traditional culinary customs to sustainable crop for high-end gastronomy? Int J. Gastron. Food Sci., 34: 100814. Search in Google Scholar

Pirwitz K., Rihko-Struckmann L., Sundmacher K. (2016). Valorization of the aqueous phase obtained from hydrothermally treated Dunaliella salina remnant biomass. Bioresour. Technol., 219: 64–71. Search in Google Scholar

Priyadarshani I., Rath B. (2012). Commercial and industrial applications of micro algae-A review. J. Algal Biomass Util., 3: 89–100. Search in Google Scholar

Purcell-Meyerink D., Packer MA., Wheeler TT., Hayes M., Franco Ruiz D., López-Pedrouso M., Lorenzo JM. (2021). Aquaculture Production of the Brown Seaweeds Laminaria digitata and Macrocystis pyrifera: Applications in Food and Pharmaceuticals. Molecules., 26: 1306. Search in Google Scholar

Rodrigues D., Freitas AC., Pereira L., Rocha-Santos TAP., Vasconcelos MW., Roriz M., Rodríguez-Alcalá LM., Gomes AMP., Duarte AC. (2015). Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem., 183: 197–207. Search in Google Scholar

Rohani-Ghadikolaei K., Abdulalian E., Ng WK. (2012). Evaluation of the proximate, fatty acid and mineral composition of representative green, brown and red seaweeds from the Persian Gulf of Iran as potential food and feed resources. J. Food Sci. Technol., 49: 774–780. Search in Google Scholar

Seghiri R., Kharbach M., Essamri A. (2019). Functional composition, nutritional properties, and biological activities of moroccan spirulina microalga. J Food Qual, 2019: 1–11. Search in Google Scholar

Stedt K., Trigo JP., Steinhagen S., Nylund GM., Forghani B., Pavia H., Undeland I. (2022). Cultivation of seaweeds in food production process waters: Evaluation of growth and crude protein content. Algal Res., 63: 102647. Search in Google Scholar

Tarver T. (2016). Palatable Proteins for Complex Palates. Food Technology Magazine., 70: 32–39. Search in Google Scholar

Tibbetts SM., Milley JE., Lall SP. (2015). Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol., 27: 1109–1119. Search in Google Scholar

Uribe E., Vega-Gálvez A., García V., Pastén A., López J., Goñi G. (2019). Effect of different drying methods on phytochemical content and amino acid and fatty acid profiles of the green seaweed, Ulva spp. J. Appl. Phycol., 31: 1967–1979. Search in Google Scholar

Véliz K., Toledo P., Araya M., Gómez MF., Villalobos V., Tala F. (2023). Chemical composition and heavy metal content of Chilean seaweeds: Potential applications of seaweed meal as food and feed ingredients. Food Chem., 398: 133866. Search in Google Scholar

Wassmann B., Hartmann C., Siegrist M. (2024). Novel microalgae-based foods: What influences Singaporean consumers’ acceptance? Food. Qual. Prefer., 113: 105068. Search in Google Scholar

Xu J., Liao W., Liu Y., Guo Y., Jiang S., Zhao C. (2023). An overview on the nutritional and bioactive components of green seaweeds. Food Prod. Process. Nutr., 5: 1–21. Search in Google Scholar

Zhang C., Tang X., Sheng L., Yang X. (2016). Enhancing the performance of Co-hydrothermal liquefaction for mixed algae strains by the Maillard reaction. Green Chemistry., 18: 2542–2553. Search in Google Scholar

Zhang Z., Kobata K., Pham H., Kos D., Tan Y., Lu J., Mcclements DJ., Zhang Z., Kobata K., Pham H., Kos D., Tan Y., Lu J., Mcclements DJ. (2022). Production of Plant-Based Seafood: Scallop Analogs Formed by Enzymatic Gelation of Pea Protein-Pectin Mixtures. Foods., 11: 851. Search in Google Scholar

Zhao L., Khang HM., Du J. (2024). Incorporation of microalgae (Nannochloropsis oceanica) into plant-based fishcake analogue: Physical property characterisation and in vitro digestion analysis. Food Hydrocoll., 146: 109212. Search in Google Scholar

eISSN:
2300-8733
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Biotechnologie, Zoologie, Medizin, Veterinärmedizin