1. bookVolume 72 (2022): Edizione 4 (December 2022)
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Open Access

Effect of in vitro gastrointestinal digestion on the chemical composition and antioxidant properties of Ginkgo biloba leaves decoction and commercial capsules

Pubblicato online: 18 Oct 2022
Volume & Edizione: Volume 72 (2022) - Edizione 4 (December 2022)
Pagine: 483 - 507
Accettato: 20 Feb 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
1846-9558
Prima pubblicazione
28 Feb 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese

1. S. Ji, D. He, T. Wang, J. Han, Z. Li, Y. Du, J. Zou, M. Guo and D. Tang, Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interactionxreversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry, J. Pharm. Biomed. Anal. 146 (2017) 68–78; https://doi.org/10.1016/j.jpba.2017.07.05710.1016/j.jpba.2017.07.05728854404 Search in Google Scholar

2. S. Czigle, J. Tóth, N. Jedlinszki, E. Háznagy-Radnai, D. Csupor and D. Tekel’ová, Ginkgo biloba food supplements on the European market – adulteration patterns revealed by quality control of selected samples, Planta Med. 84 (2018) 475–482; https://doi.org/10.1055/a-0581-520310.1055/a-0581-520329506293 Search in Google Scholar

3. L. T. Wang, X. H. Fan, Y. Jian, M. Z. Dong, Q. Yang, D. Meng and Y. J. Fu, A sensitive and selective multiple reaction monitoring mass spectrometry method for simultaneous quantification of flavonol glycoside, terpene lactones, and biflavonoids in Ginkgo biloba leaves, J. Pharm. Biomed. Anal. 170 (2019) 335–340; https://doi.org/10.1016/j.jpba.2019.03.05810.1016/j.jpba.2019.03.05830986686 Search in Google Scholar

4. E. Pereira, L. Barros and I. C. F. R. Ferreira, Chemical characterization of Ginkgo biloba L. and anti-oxidant properties of its extracts and dietary supplements, Ind. Crop Prod. 51 (2013) 244–248; https://doi.org/10.1016/j.indcrop.2013.09.01110.1016/j.indcrop.2013.09.011 Search in Google Scholar

5. L. Liu, Y. Wang, J. Zhang and S. Wang, Advances in the chemical constituents and chemical analysis of Ginkgo biloba leaf, extract, and phytopharmaceuticals, J. Pharm. Biomed. Anal. 193 (2021) Article ID 113704; https://doi.org/10.1016/j.jpba.2020.11370410.1016/j.jpba.2020.11370433157480 Search in Google Scholar

6. J. Ortega-Vidal, A. Ruiz-Riaguas, M. L. Fernández-de Córdova, P. Ortega-Barrales and E. J. Llorent-Martínez, Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea. Influence of simulated gastrointestinal in vitro digestion, Food Chem. 287 (2019) 258–264, https://doi.org/10.1016/j.foodchem.2019.02.10110.1016/j.foodchem.2019.02.10130857697 Search in Google Scholar

7. E. Fernández-García, I. Carvajal-Lérida and A. Pérez-Gálvez, In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency, Nutr. Res. 29 (2009) 751–760; https://doi.org/10.1016/j.nutres.2009.09.01610.1016/j.nutres.2009.09.01619932863 Search in Google Scholar

8. J. M. Carbonell-Capella, M. Buniowska, F. J. Barba, M. J. Esteve and A. Frígola, Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: A review, Compr. Rev. Food Sci. Food Saf. 13 (2014) 155–171; https://doi.org/10.1111/1541-4337.1204910.1111/1541-4337.1204933412647 Search in Google Scholar

9. S. Hilary, F. A. Tomás-Barberán, J. A. Martinez-Blazquez, J. Kizhakkayil, U. Souka, S. Al-Hammadi, H. Habib, W. Ibrahim and C. Platat, Polyphenol characterisation of Phoenix dactylifera L. (date) seeds using HPLC-mass spectrometry and its bioaccessibility using simulatedin-vitro digestion/Caco-2 culture model, Food Chem. 311 (2020) Article ID 125969; https://doi.org/10.1016/j.food-chem.2019.125969 Search in Google Scholar

10. M. Schulz, F. C. Biluca, L. V. Gonzaga, G. da S. C. Borges, L. Vitali, G. A. Micke, J. S. de Gois, T. S. de Almeida, D. L. G. Borges, P. R. M. Miller, A. C. O. Costa and R. Fett, Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe edulis Martius) subjected to in vitro gastrointestinal digestion, Food Chem. 228 (2017) 447–454; https://doi.org/10.1016/j.food-chem.2017.02.038 Search in Google Scholar

11. N. Jayawardena, M. I. Watawana and V. Y. Waisundara, Evaluation of the total antioxidant capa city, polyphenol contents and starch hydrolase inhibitory activity of ten edible plants in an in vitro model of digestion, Plant Food Hum. Nutr. 70 (2015) 71–76; https://doi.org/10.1007/s11130-014-0463-410.1007/s11130-014-0463-425575486 Search in Google Scholar

12. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie and A. Brodkorb, A standardized static in vitro digestion method suitable for food-an international consensus, Food Funct. 5 (2014) 1113–1124; https://doi.org/10.1039/c3fo60702j10.1039/C3FO60702J Search in Google Scholar

13. M. Alminger, A. M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena and C. N. Santos, In vitro models for studying secondary plant metabolite digestion and bioaccessibility, Compr. Rev. Food Sci Food Saf. 13 (2014) 413–436; https://doi.org/10.1111/1541-4337.1208110.1111/1541-4337.12081 Search in Google Scholar

14. X. Lin, Z. Chen, Y. Zhang, W. Luo, H. Tang, B. Deng, J. Deng and B. Li, Comparative characterisation of green tea and black tea cream: Physicochemical and phytochemical nature, Food Chem. 173 (2015) 432–440; https://doi.org/10.1016/j.foodchem.2014.10.04810.1016/j.foodchem.2014.10.048 Search in Google Scholar

15. J. Zhishen, T. Mengcheng and W. Jianming, The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals, Food Chem. 64 (1999) 555–559; https://doi.org/10.1016/S0308-8146(98)00102-210.1016/S0308-8146(98)00102-2 Search in Google Scholar

16. V. L. Singleton, R.Orthofer and R. M. Lamuela-Raventós, Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent, in Methods in Enzymology, Vol. 299, Oxidants and Antioxidants Part A (Ed. L. Packer), Academic Press, Waltham, USA, 1999, pp. 152–178.10.1016/S0076-6879(99)99017-1 Search in Google Scholar

17. M. H. Gordon, F. Paiva-Martins and M. Almeida, Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols, J. Agric. Food Chem. 49 (2001) 2480–2485; https://doi.org/10.1021/jf000537w10.1021/jf000537w Search in Google Scholar

18. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radical Biol. Med. 26 (1999) 1231–1237; https://doi.org/10.1016/S0891-5849(98)00315-310.1016/S0891-5849(98)00315-3 Search in Google Scholar

19. I. F. F. Benzie and J. J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “Anti-oxidant Power”: The FRAP assay, Anal. Biochem. 239 (1996) 70–76; https://doi.org/10.1006/abio.1996.029210.1006/abio.1996.0292 Search in Google Scholar

20. M. Alminger, A. M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena and C. N. Santos, In vitro models for studying secondary plant metabolite digestion and bioaccessibility, Compr. Rev. Food Sci. Food Saf. 13 (2014) 413–436; https://doi.org/10.1111/1541-4337.1208110.1111/1541-4337.12081 Search in Google Scholar

21. Editorial Board of Chinese Pharmacopoeia, Chinese Pharmacopoeia, Vol. 4, Chemistry and Industry Press, Beijing 2020, p. 374. Search in Google Scholar

22. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH Harmonised Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology Q2(R1), Current Step 4 version, November 2005; https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf; last access date February 6, 2022 Search in Google Scholar

23. F. Wang, K. Jiang and Z. Li, Purification and identification of genistein in Ginkgo biloba leaf extract, Chin. J. Chromatogr. 25 (2007) 509–513; https://doi.org/10.1016/S1872-2059(07)60019-410.1016/S1872-2059(07)60019-4 Search in Google Scholar

24. A. Papadopoulou, R. J. Green and R. A. Frazier, Interaction of flavonoids with bovine serum Albumin: a fluorescence quenching study, J. Agric. Food Chem. 53 (2005) 158–163; https://doi.org/10.1021/jf048693g10.1021/jf048693g15631523 Search in Google Scholar

25. J. Ortega-Vidal, A. Ruiz-Riaguas, M. L. Fernández-de Córdova, P. Ortega-Barrales and E. J. Llorent-Martínez, Phenolic profile and antioxidant activity of Jasonia glutinosa herbal tea, Influence of simulated gastrointestinal in vitro digestion, Food Chem. 287 (2019) 258–264, https://doi.org/10.1016/j.foodchem.2019.02.10110.1016/j.foodchem.2019.02.10130857697 Search in Google Scholar

26. S. Beck and J. Stengel, Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L., Phytochemistry 130 (2016) 201–206; https://doi.org/10.1016/j.phytochem.2016.05.00510.1016/j.phytochem.2016.05.00527233155 Search in Google Scholar

27. K. J. Siebert, N. V. Troukhanover and P. Y. Lynn, Nature of polyphenol-protein interactions, J. Agric. Food Chem. 44 (1996) 80–85; https://doi.org/10.1021/jf950245910.1021/jf9502459 Search in Google Scholar

28. J. A. Vinson, X. Su, L. Zubik and P. Bose, Phenol antioxidant quantity and quality in foods: fruits, J. Agric. Food Chem. 49 (2001) 5315–5321; https://doi.org/10.1021/jf000929310.1021/jf000929311714322 Search in Google Scholar

29. M. Alminger, A. M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. McDougall, T. Requena and C. N. Santos, Antioxidant activity, total phenolics and flavonoids contents: should we ban in vitro screening methods? Food Chem. 264 (2018) 471–475; https://doi.org/10.1016/j.foodchem.2018.04.01210.1016/j.foodchem.2018.04.01229853403 Search in Google Scholar

30. M. D’Archivio, C. Filesi, R. Varì, B. Scazzocchio and R. Masella, Bioavailability of the polyphenols: Status and controversies, Int. J. Mol. Sci. 11 (2010) 1321–1342; https://doi.org/10.3390/ijms1104132110.3390/ijms11041321287111820480022 Search in Google Scholar

31. V. Vadivel and P. Brindha, Antioxidant property of solvent extract and acid/alkali hydrolysates from rice hulls, Food Biosci. 11 (2015) 85–91; https://doi.org/10.1016/j.fbio.2015.06.00210.1016/j.fbio.2015.06.002 Search in Google Scholar

32. C. Monente, I. A. Ludwig, A. Stalmach, M. P. de Peña, C. Cid and A. Crozier, In vitro studies on the stability in the proximal gastrointestinal tract and bioaccessibility in Caco-2 cells of chlorogenic acids from spent coffee grounds, Int. J. Food Sci. Nutr. 66 (2015) 657–664; https://doi.org/10.3109/09637486.2015.106487410.3109/09637486.2015.106487426203817 Search in Google Scholar

33. X. Meng, C. Tan and Y. Feng, Solvent extraction and in vitro simulated gastrointestinal digestion of phenolic compounds from purple sweet potato, Int. J. Food Sci. Technol. 54 (2019) 2887–2896; https://doi.org/10.1111/ijfs.1415310.1111/ijfs.14153 Search in Google Scholar

34. M. Friedman and H. S. Jürgens, Effect of pH on the stability of plant phenolic compounds, J. Agric. Food Chem. 48 (2000) 2101–2110; https://doi.org/10.1021/jf990489j10.1021/jf990489j10888506 Search in Google Scholar

35. M. Pellegrini, R. Lucas-Gonzalez, J. Fernández-López, A. Ricci, J. A. Pérez-Álvarez, C. lo Sterzo and M. Viuda-Martos, Bioaccessibility of polyphenolic compounds of six quinoa seeds during in vitro gastrointestinal digestion, J. Funct. Foods 38 (2017) 77–88; https://doi.org/10.1016/j.jff.2017.08.04210.1016/j.jff.2017.08.042 Search in Google Scholar

36. L. Castaldo, A. Narváez, L. Izzo, G. Graziani and A. Ritieni, In vitro bioaccessibility and antioxidant activity of coffee silverskin polyphenolic extract and characterization of bioactive compounds using UHPLC-Q-Orbitrap HRMS, Molecules 25(9) (2020) Article ID 2132 (14 pages); https://doi.org/10.3390/molecules2509213210.3390/molecules25092132724908232370127 Search in Google Scholar

37. G. Velderrain-Rodríguez, A. Quirós-Sauceda, G. Mercado-Mercado, J. F. Ayala-Zavala, H. Astiazarán-García, R. M. Robles-Sánchez, A. Wall-Medrano, S. Sayago-Ayerdi and G. A. González-Aguilar, Effect of dietary fiber on the bioaccessibility of phenolic compounds of mango, papaya and pineapple fruits by an in vitro digestion model, Food Sci. Technol. (Campinas) 36(2) (2016) 188–194; https://doi.org/10.1590/1678-457X.672910.1590/1678-457X.6729 Search in Google Scholar

38. F. F. de Araújo, D. de Paulo Farias, I. A. Neri-Numa, F. L. Dias-Audibert, J. Delafiori, F. G. de Souza, R. R. Catharino, C. K. do Sacramento and G. M. Pastore, Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from araçá-boi fruit, LWT - Food Sci. Technol. 135 (2021) Article ID 110230; https://doi.org/10.1016/j.lwt.2020.110230. Article 11023010.1016/j.lwt.2020.110230 Search in Google Scholar

39. W. Khochapong, S. Ketnawa, Y. Ogawa and N. Punbusayakul, Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract, Food Chem. 348 (2021) Article ID 129094; https://doi.org/10.1016/j.foodchem.2021.12909410.1016/j.foodchem.2021.12909433516995 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo