Issues

Journal & Issues

AHEAD OF PRINT

Volume 67 (2020): Issue 4 (December 2020)

Volume 67 (2020): Issue 3 (September 2020)

Volume 67 (2020): Issue 2 (June 2020)

Volume 67 (2020): Issue 1 (March 2020)

Volume 66 (2019): Issue 4 (December 2019)

Volume 66 (2019): Issue 3 (December 2019)

Volume 66 (2019): Issue 2 (June 2019)

Volume 66 (2019): Issue 1 (March 2019)

Volume 65 (2018): Issue 4 (December 2018)

Volume 65 (2018): Issue 3 (September 2018)

Volume 65 (2018): Issue 2 (September 2018)

Volume 65 (2018): Issue 1 (March 2018)

Volume 64 (2017): Issue 4 (December 2017)

Volume 64 (2017): Issue 3 (September 2017)

Volume 64 (2017): Issue 2 (July 2017)

Volume 64 (2017): Issue 1 (March 2017)

Volume 63 (2016): Issue 4 (December 2016)

Volume 63 (2016): Issue 3 (September 2016)

Volume 63 (2016): Issue 2 (July 2016)

Volume 63 (2016): Issue 1 (May 2016)

Journal Details
Format
Journal
eISSN
1854-7400
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English

Search

Volume 63 (2016): Issue 1 (May 2016)

Journal Details
Format
Journal
eISSN
1854-7400
First Published
30 Mar 2016
Publication timeframe
4 times per year
Languages
English

Search

5 Articles
Open Access

A comparative study of soil-structure interaction in the case of frame structures with raft foundation

Published Online: 18 Aug 2016
Page range: 1 - 8

Abstract

Abstract

Design and modelling of raft foundations and selecting the value of coefficient of vertical subgrade reaction are still actively discussed topics in geotechnical and structural engineering. In everyday practice, soil–structure interaction is mostly taken into account by using the theory of ‘beam on elastic foundation’, in which the soil is substituted by a certain set of coefficients of subgrade reaction. In this study, finite element analysis of a building was performed using a geotechnical software (Plaxis 3D), which is capable of modelling the subsoil as a continuum, and a structural software (Axis VM), which uses the concept of ‘beam on elastic foundation’. The evaluation of the results and recommendations for everyday engineering practice are introduced in this paper.

Keywords

  • raft foundation
  • settlement
  • finite element analysis
  • subgrade reaction
Open Access

Molecular dynamics simulation of aluminium melting

Published Online: 18 Aug 2016
Page range: 9 - 18

Abstract

Abstract

Solid–liquid phase transition has been simulated by the molecular dynamics method, using isobaric–isoenthalpic ensemble. For interatomic potential, glue potential has been selected. The original algorithm for bookkeeping of the information on neighbouring relationships of the atoms has been developed and used in this research. Time consumption for calculation of interatomic forces has been reduced from o(N2) to o(N) by the use of this algorithm.

Calculations show that phase transition from solid to liquid occurs between 1,000 K and 1,300 K. The simulated temperature of phase transition is higher than the experimental value due to the absence of crystal defects. If constant heat flux is supplied, temperature decreases during melting because the superheated state becomes unstable. During the cooling process, no significant changes of the observed variables were detected due to the high cooling rate, which prevents crystallisation.

Keywords

  • molecular dynamics simulation
  • isobaric–isoenthalpic ensemble
  • glue potential
  • bulk aluminium melting
Open Access

Reconstruction and appraisal of Akunu–Akoko area iron ore deposits using geological and magnetic approaches

Published Online: 18 Aug 2016
Page range: 19 - 38

Abstract

Abstract

Geological mapping and magnetic methods were applied for the exploration of iron ore deposits in the Akunu–Akoko area of Southwestern Nigeria for the purpose of evaluating their geological characteristics and resource potentials. A proton magnetometer measures the vertical, horizontal and total magnetic intensities in gammas. The subsurface geology was interpreted qualitatively and quantitatively. The downward continuations and second vertical derivatives, the small-sized mineralised bodies and shallow features in the study area were mapped. The faults are trending in the following directions: NE–SW, NW–SE, N–S and E–W groups, while the iron ore mineralisation is structurally controlled by two major groups of fault trends, namely, the NE–SW and NW–SE; the N–S and E–W groups are mere occurrences that do not contribute to the structural control of the iron ore mineralisation in Akunu.

The upward continuation has a linear feature similar to the principal orientation of the regional faults, while Locations 2 and 3 have relatively high magnetic susceptibility zones; suspected to be iron ore deposits. The depths to the magnetic sources ranged from 25 m to about 250 m.

Keywords

  • magnetic method
  • geological mapping
  • quantitative interpretation
  • Akunu
  • Nigeria
Open Access

Regional turbidites and turbiditic environments developed during Neogene and Quaternary in Croatia

Published Online: 18 Aug 2016
Page range: 39 - 54

Abstract

Abstract

The Croatian Neogene and Quaternary depositional sequences preserve a record of several different depositional environments with turbidite successions. These are turbiditic systems developed during the Late Miocene in the Croatian part of the Pannonian Basin System and during the Pliocene and Pleistocene in the northern Adriatic Sea. The shape, salinity and depths of depositional areas were significantly different in these two depressional areas, but both were fed mostly with Alpine detritus. Neogene turbidites with lacustrine pelitic sedimentation formed thick heterogeneous sequences of sandstones and marls (totalling several hundreds to some thousands of metres in thickness in different depressional parts) of Upper Miocene age in Northern Croatia. By contrast, Pliocene and especially Pleistocene turbidites of the northern Adriatic were deposited in a marine environment where the total thickness of sand and clay sequences can reach up to several thousand metres. In both cases, individual sandy or sandstone turbiditic sequences (events) can reach several tens of metres in thickness. These turbidite clastic sediments are important hydrocarbon reservoirs.

Keywords

  • siliciclastics
  • Pannonian Basin System
  • Po Depression
  • Upper Miocene
  • Pliocene
  • Quaternary
Open Access

Hydrogeophysical investigation of groundwater potential and aquifer vulnerability prediction in basement complex terrain – A case study from Akure, Southwestern Nigeria

Published Online: 18 Aug 2016
Page range: 55 - 66

Abstract

Abstract

This study provides a model for the prediction of groundwater potential and vulnerability of basement aquifers in parts of Akure, Southwestern Nigeria. Hydrogeophysical surveys involving very-low-frequency electromagnetic (VLF-EM) profiling and electrical resistivity (ER) sounding, as well as evaluation of hydraulic gradient using three-point method, were carried out. Ten VLF-EM reconnaissance survey traverses, with lengths ranging from 55 m to 75 m, at 10 m station separation, and 12 vertical electrical sounding (VES) stations were occupied. Two-dimensional map of the filtered real component reveals areas of high conductivity, indicative of linear features that can serve as a reservoir or conduit for fluid flow. Interpretation of the VES results delineates three to four geoelectric units. Two aquifer zones were identified, with resistivity values in the ranges of 20 Ωm to 310 Ωm and 100 Ωm to 3,000 Ω m, respectively. Transverse resistance, longitudinal conductance, coefficient of anisotropy and hydraulic gradient have values ranging from 318.2 Ωm2 to 1,041.8 Ωm2, 0.11 mhos to 0.39 mhos, 1.04 to 1.74 and 0.017 to 0.05, respectively. The results of this study identified two prospective borehole locations and the optimum position to site the proposed septic system, based on the aquifer’s protective capacity and groundwater flow properties.

Keywords

  • aquifer vulnerability
  • basement aquifer
  • contamination
  • geophysical methods
  • groundwater flow
5 Articles
Open Access

A comparative study of soil-structure interaction in the case of frame structures with raft foundation

Published Online: 18 Aug 2016
Page range: 1 - 8

Abstract

Abstract

Design and modelling of raft foundations and selecting the value of coefficient of vertical subgrade reaction are still actively discussed topics in geotechnical and structural engineering. In everyday practice, soil–structure interaction is mostly taken into account by using the theory of ‘beam on elastic foundation’, in which the soil is substituted by a certain set of coefficients of subgrade reaction. In this study, finite element analysis of a building was performed using a geotechnical software (Plaxis 3D), which is capable of modelling the subsoil as a continuum, and a structural software (Axis VM), which uses the concept of ‘beam on elastic foundation’. The evaluation of the results and recommendations for everyday engineering practice are introduced in this paper.

Keywords

  • raft foundation
  • settlement
  • finite element analysis
  • subgrade reaction
Open Access

Molecular dynamics simulation of aluminium melting

Published Online: 18 Aug 2016
Page range: 9 - 18

Abstract

Abstract

Solid–liquid phase transition has been simulated by the molecular dynamics method, using isobaric–isoenthalpic ensemble. For interatomic potential, glue potential has been selected. The original algorithm for bookkeeping of the information on neighbouring relationships of the atoms has been developed and used in this research. Time consumption for calculation of interatomic forces has been reduced from o(N2) to o(N) by the use of this algorithm.

Calculations show that phase transition from solid to liquid occurs between 1,000 K and 1,300 K. The simulated temperature of phase transition is higher than the experimental value due to the absence of crystal defects. If constant heat flux is supplied, temperature decreases during melting because the superheated state becomes unstable. During the cooling process, no significant changes of the observed variables were detected due to the high cooling rate, which prevents crystallisation.

Keywords

  • molecular dynamics simulation
  • isobaric–isoenthalpic ensemble
  • glue potential
  • bulk aluminium melting
Open Access

Reconstruction and appraisal of Akunu–Akoko area iron ore deposits using geological and magnetic approaches

Published Online: 18 Aug 2016
Page range: 19 - 38

Abstract

Abstract

Geological mapping and magnetic methods were applied for the exploration of iron ore deposits in the Akunu–Akoko area of Southwestern Nigeria for the purpose of evaluating their geological characteristics and resource potentials. A proton magnetometer measures the vertical, horizontal and total magnetic intensities in gammas. The subsurface geology was interpreted qualitatively and quantitatively. The downward continuations and second vertical derivatives, the small-sized mineralised bodies and shallow features in the study area were mapped. The faults are trending in the following directions: NE–SW, NW–SE, N–S and E–W groups, while the iron ore mineralisation is structurally controlled by two major groups of fault trends, namely, the NE–SW and NW–SE; the N–S and E–W groups are mere occurrences that do not contribute to the structural control of the iron ore mineralisation in Akunu.

The upward continuation has a linear feature similar to the principal orientation of the regional faults, while Locations 2 and 3 have relatively high magnetic susceptibility zones; suspected to be iron ore deposits. The depths to the magnetic sources ranged from 25 m to about 250 m.

Keywords

  • magnetic method
  • geological mapping
  • quantitative interpretation
  • Akunu
  • Nigeria
Open Access

Regional turbidites and turbiditic environments developed during Neogene and Quaternary in Croatia

Published Online: 18 Aug 2016
Page range: 39 - 54

Abstract

Abstract

The Croatian Neogene and Quaternary depositional sequences preserve a record of several different depositional environments with turbidite successions. These are turbiditic systems developed during the Late Miocene in the Croatian part of the Pannonian Basin System and during the Pliocene and Pleistocene in the northern Adriatic Sea. The shape, salinity and depths of depositional areas were significantly different in these two depressional areas, but both were fed mostly with Alpine detritus. Neogene turbidites with lacustrine pelitic sedimentation formed thick heterogeneous sequences of sandstones and marls (totalling several hundreds to some thousands of metres in thickness in different depressional parts) of Upper Miocene age in Northern Croatia. By contrast, Pliocene and especially Pleistocene turbidites of the northern Adriatic were deposited in a marine environment where the total thickness of sand and clay sequences can reach up to several thousand metres. In both cases, individual sandy or sandstone turbiditic sequences (events) can reach several tens of metres in thickness. These turbidite clastic sediments are important hydrocarbon reservoirs.

Keywords

  • siliciclastics
  • Pannonian Basin System
  • Po Depression
  • Upper Miocene
  • Pliocene
  • Quaternary
Open Access

Hydrogeophysical investigation of groundwater potential and aquifer vulnerability prediction in basement complex terrain – A case study from Akure, Southwestern Nigeria

Published Online: 18 Aug 2016
Page range: 55 - 66

Abstract

Abstract

This study provides a model for the prediction of groundwater potential and vulnerability of basement aquifers in parts of Akure, Southwestern Nigeria. Hydrogeophysical surveys involving very-low-frequency electromagnetic (VLF-EM) profiling and electrical resistivity (ER) sounding, as well as evaluation of hydraulic gradient using three-point method, were carried out. Ten VLF-EM reconnaissance survey traverses, with lengths ranging from 55 m to 75 m, at 10 m station separation, and 12 vertical electrical sounding (VES) stations were occupied. Two-dimensional map of the filtered real component reveals areas of high conductivity, indicative of linear features that can serve as a reservoir or conduit for fluid flow. Interpretation of the VES results delineates three to four geoelectric units. Two aquifer zones were identified, with resistivity values in the ranges of 20 Ωm to 310 Ωm and 100 Ωm to 3,000 Ω m, respectively. Transverse resistance, longitudinal conductance, coefficient of anisotropy and hydraulic gradient have values ranging from 318.2 Ωm2 to 1,041.8 Ωm2, 0.11 mhos to 0.39 mhos, 1.04 to 1.74 and 0.017 to 0.05, respectively. The results of this study identified two prospective borehole locations and the optimum position to site the proposed septic system, based on the aquifer’s protective capacity and groundwater flow properties.

Keywords

  • aquifer vulnerability
  • basement aquifer
  • contamination
  • geophysical methods
  • groundwater flow

Plan your remote conference with Sciendo