Published Online: 20 Nov 2021 Page range: 287 - 296
Abstract
Abstract
The wireless connection distance between the transmission and reception coils of printed circuit boards (PCB) influences the mutual inductance and affects circuit performance. In this study, the mutual inductance M of PCB coils was investigated, and two analytical methods were presented for calculating the mutual inductance between two coaxial rectangular planar PCB coils incorporating magnetic layer. The results were acquired through calculations by using the Neumann integral and Biot-Savart methods. The complete integral calculations and detailed demonstrations of the two methods are presented. The obtained formulas were introduced in some examples of coils with different number of turns. The analytical and experimental results were compared, and a strong agreement between them was observed.
Published Online: 20 Nov 2021 Page range: 297 - 305
Abstract
Abstract
We are witnessing a growing interest in processing signals sampled below the Nyquist rate. The main limitation of current approaches considering estimation of multicomponent sinusoids parameters is the assumption of frequencies on the frequency grid. The sinusoids away from the frequency grid are considered in this paper. The proposed procedure has three stages. In the first two, a rough estimation of signal components is performed while in the third refinement in estimation is achieved in a component-by-component manner. We have tested the developed technique on an extended set of simulation examples showing excellent accuracy. Three scenarios are considered in experiments: missing samples, noisy environment, and non-uniform sampling below the Nyquist rate.
Published Online: 20 Nov 2021 Page range: 306 - 314
Abstract
Abstract
The growing demand for enhanced capacities, broadband services, and high transmission speeds to accommodate speech, image, multimedia, and data communication simultaneously puts a requirement for antenna to operate in multiple frequency bands. A novel compact fractal antenna based on self-similar stair-shaped fractal geometry is proposed in this paper. The fractal antenna is designed by modifying the patch antenna through the iterative process using stair-shaped fractal geometry. The third iteration results in a tri-band response, and the antenna resonate at 3.65, 4.825, and 6.325 GHz with impedance bandwidths of 75.6, 121.2, and 211.4 MHz, respectively. The antenna is designed in CST Microwave studio, and evaluated for operating bands and radiation characteristics. Prototype for the third iteration of the fractal antenna is fabricated on FR-4 substrate which is further tested for measured operating bands and radiation characteristics. The simulated and measured results show good agreement.
Published Online: 20 Nov 2021 Page range: 315 - 322
Abstract
Abstract
With the increased complexity of power systems and the high integration of smart meters, advanced sensors, and high-level communication infrastructures within the modern power grids, the collected data becomes enormous and requires fast computation and outstanding analyzing methods under normal conditions. However, under abnormal conditions such as faults, the challenges dramatically increase. Such faults require timely and accurate fault detection, identification, and location approaches for guaranteeing their desired performance. This paper proposes two machine learning approaches based on the binary classification to improve the process of fault detection in smart grids. Besides, it presents four machine learning models trained and tested on real and modern fault detection data set designed by the Technical University of Ostrava. Many evaluation measures are applied to test and compare these approaches and models. Moreover, receiver operating characteristic curves are utilized to prove the applicability and validity of the proposed approaches. Finally, the proposed models are compared to previous studies to confirm their superiority.
Published Online: 20 Nov 2021 Page range: 323 - 329
Abstract
Abstract
A wideband down conversion ring mixer is proposed for multi band orthogonal frequency division multiplexing (MB-OFDM) system in 180 nm CMOS technology. The mixer is essentially used in a heterodyne wireless receiver to enhance the selectivity of the system. Being a nonlinear system, the mixer dominates the overall performance of the system. The design of down conversion mixer is the most challenging part of a receive chain. Wideband impedance matching always remains a challenge in any radio frequency integrated circuit design. This paper presents the design of a ring mixer with high linearity, wideband impedance matching using differential resistive impedance matching and without using any DC bias. The proposed mixer is tuned for a frequency of 3.432 GHz of band 1 of the MB-OFDM system. Mixer core is based on the FET ring mixer topology. The mixer is implemented in 180 nm CMOS technology. The mixer achieves the minimum conversion loss of 10.49 dB, 1 dB compression point (P1) of 12.40 dBm, third order input intercept point (IIP3) of 12.01 dBm, a minimum SSB noise figure of 8.99 dB, and S11 of less than -10 dB over the frequency range of 0 to 13.61 GHz . The layout of the mixer records an active area of 183.75 μm2.
Published Online: 20 Nov 2021 Page range: 330 - 336
Abstract
Abstract
In this paper, the original method to design of PID robust decentralized controller is obtained for linear time-invariant large-scale uncertain system. The controller design procedure performs on the subsystem level such that the closed-loop stability and performance of complex system in the frame of the designer chosen controller design procedure ( H2, L2 -gain, pole placement,...) is guaranteed. The proposed method is implemented in two steps. In the first step, the required dynamic properties of the subsystems are determined so as to ensure the stability of complex system. In the second step, on the subsystem level a decentralized controller design is provided using any suitable design procedure for each subsystem.
Published Online: 20 Nov 2021 Page range: 337 - 342
Abstract
Abstract
Recently a transmission technique, which can save energy thanks to supportive transmission in the feedback channel, was presented for transmitted information with different probability distributions. The basic assumption for its practical exploitation is that a node collecting information has enough energy - much more than the supported node. So far, in the published theoretical analysis it was assumed that the node does not consume energy for receiving the supporting sequence or that the amount of this energy is negligible comparing to energy needed for transmission. This paper makes the analyses more exact and practically oriented. Particularly, it estimates possible energy savings by incorporating the energy expenditures for receiving the supporting sequence in scenarios with Poisson distributed payload messages. The data from a real transceiver for CubeSat are used for obtaining the numerical results in these estimations.
Published Online: 20 Nov 2021 Page range: 343 - 347
Abstract
Abstract
The propagation medium plays a crucial role in any wireless communication networks, the channel between the transmitter and the receiver, deteriorate the quality of the received signal due to the uncontrollable interactions such as scattering, reflection, and refraction in the channel with the surrounding objects. To overcome this challenge, the recent advent of recongurable intelligent surfaces can be helpful, in which the network operators can control the radio waves, eg, the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. On the other hand, few research papers reported an efficient code domain non orthogonal multiple access (NOMA) such as Interleave division multiple access (IDMA) system for wireless information transfer. Persuaded by the capability of this arising RIS technology, the present article is aimed to provide the modified framework of IDMA (code-domain NOMA) communication system based on RIS technology. Simulation results demonstrate that the proposed system achieves better SNR performance than the conventional IDMA framework.
Published Online: 20 Nov 2021 Page range: 348 - 351
Abstract
Abstract
Interpolation improves the resolution of the curve. Based on the stationary characteristics of the signal and the non-stationary characteristics of the noise, the theoretical proof indicates that the piecewise linear interpolation can improve the signal-to-noise ratio, which is further confirmed by simulation results.
Published Online: 20 Nov 2021 Page range: 352 - 355
Abstract
Abstract
More and more mobile computing devices such as smartphones with limited battery power are being used in IEEE 802.11 wireless LANs, and WiFi sensors with very limited battery power are expected to get Internet access through wireless LANs in the near future. We propose an efficient MAC (Medium Access Control) protocol so that WiFi sensors and mobile devices are connected to APs (Access Points) in IEEE 802.11 wireless LANs in an energy-efficient manner.
The wireless connection distance between the transmission and reception coils of printed circuit boards (PCB) influences the mutual inductance and affects circuit performance. In this study, the mutual inductance M of PCB coils was investigated, and two analytical methods were presented for calculating the mutual inductance between two coaxial rectangular planar PCB coils incorporating magnetic layer. The results were acquired through calculations by using the Neumann integral and Biot-Savart methods. The complete integral calculations and detailed demonstrations of the two methods are presented. The obtained formulas were introduced in some examples of coils with different number of turns. The analytical and experimental results were compared, and a strong agreement between them was observed.
We are witnessing a growing interest in processing signals sampled below the Nyquist rate. The main limitation of current approaches considering estimation of multicomponent sinusoids parameters is the assumption of frequencies on the frequency grid. The sinusoids away from the frequency grid are considered in this paper. The proposed procedure has three stages. In the first two, a rough estimation of signal components is performed while in the third refinement in estimation is achieved in a component-by-component manner. We have tested the developed technique on an extended set of simulation examples showing excellent accuracy. Three scenarios are considered in experiments: missing samples, noisy environment, and non-uniform sampling below the Nyquist rate.
The growing demand for enhanced capacities, broadband services, and high transmission speeds to accommodate speech, image, multimedia, and data communication simultaneously puts a requirement for antenna to operate in multiple frequency bands. A novel compact fractal antenna based on self-similar stair-shaped fractal geometry is proposed in this paper. The fractal antenna is designed by modifying the patch antenna through the iterative process using stair-shaped fractal geometry. The third iteration results in a tri-band response, and the antenna resonate at 3.65, 4.825, and 6.325 GHz with impedance bandwidths of 75.6, 121.2, and 211.4 MHz, respectively. The antenna is designed in CST Microwave studio, and evaluated for operating bands and radiation characteristics. Prototype for the third iteration of the fractal antenna is fabricated on FR-4 substrate which is further tested for measured operating bands and radiation characteristics. The simulated and measured results show good agreement.
With the increased complexity of power systems and the high integration of smart meters, advanced sensors, and high-level communication infrastructures within the modern power grids, the collected data becomes enormous and requires fast computation and outstanding analyzing methods under normal conditions. However, under abnormal conditions such as faults, the challenges dramatically increase. Such faults require timely and accurate fault detection, identification, and location approaches for guaranteeing their desired performance. This paper proposes two machine learning approaches based on the binary classification to improve the process of fault detection in smart grids. Besides, it presents four machine learning models trained and tested on real and modern fault detection data set designed by the Technical University of Ostrava. Many evaluation measures are applied to test and compare these approaches and models. Moreover, receiver operating characteristic curves are utilized to prove the applicability and validity of the proposed approaches. Finally, the proposed models are compared to previous studies to confirm their superiority.
A wideband down conversion ring mixer is proposed for multi band orthogonal frequency division multiplexing (MB-OFDM) system in 180 nm CMOS technology. The mixer is essentially used in a heterodyne wireless receiver to enhance the selectivity of the system. Being a nonlinear system, the mixer dominates the overall performance of the system. The design of down conversion mixer is the most challenging part of a receive chain. Wideband impedance matching always remains a challenge in any radio frequency integrated circuit design. This paper presents the design of a ring mixer with high linearity, wideband impedance matching using differential resistive impedance matching and without using any DC bias. The proposed mixer is tuned for a frequency of 3.432 GHz of band 1 of the MB-OFDM system. Mixer core is based on the FET ring mixer topology. The mixer is implemented in 180 nm CMOS technology. The mixer achieves the minimum conversion loss of 10.49 dB, 1 dB compression point (P1) of 12.40 dBm, third order input intercept point (IIP3) of 12.01 dBm, a minimum SSB noise figure of 8.99 dB, and S11 of less than -10 dB over the frequency range of 0 to 13.61 GHz . The layout of the mixer records an active area of 183.75 μm2.
In this paper, the original method to design of PID robust decentralized controller is obtained for linear time-invariant large-scale uncertain system. The controller design procedure performs on the subsystem level such that the closed-loop stability and performance of complex system in the frame of the designer chosen controller design procedure ( H2, L2 -gain, pole placement,...) is guaranteed. The proposed method is implemented in two steps. In the first step, the required dynamic properties of the subsystems are determined so as to ensure the stability of complex system. In the second step, on the subsystem level a decentralized controller design is provided using any suitable design procedure for each subsystem.
Recently a transmission technique, which can save energy thanks to supportive transmission in the feedback channel, was presented for transmitted information with different probability distributions. The basic assumption for its practical exploitation is that a node collecting information has enough energy - much more than the supported node. So far, in the published theoretical analysis it was assumed that the node does not consume energy for receiving the supporting sequence or that the amount of this energy is negligible comparing to energy needed for transmission. This paper makes the analyses more exact and practically oriented. Particularly, it estimates possible energy savings by incorporating the energy expenditures for receiving the supporting sequence in scenarios with Poisson distributed payload messages. The data from a real transceiver for CubeSat are used for obtaining the numerical results in these estimations.
The propagation medium plays a crucial role in any wireless communication networks, the channel between the transmitter and the receiver, deteriorate the quality of the received signal due to the uncontrollable interactions such as scattering, reflection, and refraction in the channel with the surrounding objects. To overcome this challenge, the recent advent of recongurable intelligent surfaces can be helpful, in which the network operators can control the radio waves, eg, the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. On the other hand, few research papers reported an efficient code domain non orthogonal multiple access (NOMA) such as Interleave division multiple access (IDMA) system for wireless information transfer. Persuaded by the capability of this arising RIS technology, the present article is aimed to provide the modified framework of IDMA (code-domain NOMA) communication system based on RIS technology. Simulation results demonstrate that the proposed system achieves better SNR performance than the conventional IDMA framework.
Interpolation improves the resolution of the curve. Based on the stationary characteristics of the signal and the non-stationary characteristics of the noise, the theoretical proof indicates that the piecewise linear interpolation can improve the signal-to-noise ratio, which is further confirmed by simulation results.
More and more mobile computing devices such as smartphones with limited battery power are being used in IEEE 802.11 wireless LANs, and WiFi sensors with very limited battery power are expected to get Internet access through wireless LANs in the near future. We propose an efficient MAC (Medium Access Control) protocol so that WiFi sensors and mobile devices are connected to APs (Access Points) in IEEE 802.11 wireless LANs in an energy-efficient manner.