Journal & Issues

Volume 74 (2023): Issue 4 (August 2023)

Volume 74 (2023): Issue 3 (June 2023)

Volume 74 (2023): Issue 2 (April 2023)

Volume 74 (2023): Issue 1 (February 2023)

Volume 73 (2022): Issue 6 (December 2022)

Volume 73 (2022): Issue 5 (September 2022)

Volume 73 (2022): Issue 4 (August 2022)

Volume 73 (2022): Issue 3 (June 2022)

Volume 73 (2022): Issue 2 (April 2022)

Volume 73 (2022): Issue 1 (February 2022)

Volume 72 (2021): Issue 6 (December 2021)

Volume 72 (2021): Issue 5 (September 2021)

Volume 72 (2021): Issue 4 (August 2021)

Volume 72 (2021): Issue 3 (June 2021)

Volume 72 (2021): Issue 2 (April 2021)

Volume 72 (2021): Issue 1 (February 2021)

Volume 71 (2020): Issue 6 (December 2020)

Volume 71 (2020): Issue 5 (September 2020)

Volume 71 (2020): Issue 4 (August 2020)

Volume 71 (2020): Issue 3 (June 2020)

Volume 71 (2020): Issue 2 (April 2020)

Volume 71 (2020): Issue 1 (February 2020)

Volume 70 (2019): Issue 7 (December 2019)
Special Issue

Volume 70 (2019): Issue 6 (December 2019)

Volume 70 (2019): Issue 5 (September 2019)

Volume 70 (2019): Issue 4 (August 2019)

Volume 70 (2019): Issue 3 (June 2019)

Volume 70 (2019): Issue 2 (April 2019)

Volume 70 (2019): Issue 1 (February 2019)

Volume 69 (2018): Issue 6 (December 2018)

Volume 69 (2018): Issue 5 (September 2018)

Volume 69 (2018): Issue 4 (August 2018)

Volume 69 (2018): Issue 3 (June 2018)

Volume 69 (2018): Issue 2 (March 2018)

Volume 69 (2018): Issue 1 (January 2018)

Volume 68 (2017): Issue 7 (December 2017)

Volume 68 (2017): Issue 6 (November 2017)

Volume 68 (2017): Issue 5 (September 2017)

Volume 68 (2017): Issue 4 (August 2017)

Volume 68 (2017): Issue 3 (May 2017)

Volume 68 (2017): Issue 2 (March 2017)

Volume 68 (2017): Issue 1 (January 2017)

Volume 67 (2016): Issue 6 (December 2016)

Volume 67 (2016): Issue 5 (September 2016)

Volume 67 (2016): Issue 4 (July 2016)

Volume 67 (2016): Issue 3 (May 2016)

Volume 67 (2016): Issue 2 (April 2016)

Volume 67 (2016): Issue 1 (January 2016)

Volume 66 (2015): Issue 6 (November 2015)

Volume 66 (2015): Issue 5 (September 2015)

Volume 66 (2015): Issue 4 (July 2015)

Volume 66 (2015): Issue 3 (May 2015)

Volume 66 (2015): Issue 2 (March 2015)

Volume 66 (2015): Issue 1 (January 2015)

Volume 65 (2015): Issue 6 (January 2015)

Volume 65 (2014): Issue 5 (September 2014)

Volume 65 (2014): Issue 4 (August 2014)

Volume 65 (2014): Issue 3 (May 2014)

Volume 65 (2014): Issue 2 (March 2014)

Volume 65 (2014): Issue 1 (January 2014)

Volume 64 (2013): Issue 6 (November 2013)

Volume 64 (2013): Issue 5 (September 2013)

Volume 64 (2013): Issue 4 (June 2013)

Volume 64 (2013): Issue 3 (May 2013)

Volume 64 (2013): Issue 2 (March 2013)

Volume 64 (2013): Issue 1 (January 2013)

Volume 63 (2012): Issue 6 (December 2012)

Volume 63 (2012): Issue 5 (November 2012)

Volume 63 (2012): Issue 4 (July 2012)

Volume 63 (2012): Issue 3 (May 2012)

Volume 63 (2012): Issue 2 (March 2012)

Volume 63 (2012): Issue 1 (January 2012)

Volume 62 (2011): Issue 6 (November 2011)

Volume 62 (2011): Issue 5 (September 2011)

Volume 62 (2011): Issue 4 (July 2011)

Volume 62 (2011): Issue 3 (May 2011)

Volume 62 (2011): Issue 2 (March 2011)

Volume 62 (2011): Issue 1 (January 2011)

Volume 61 (2010): Issue 6 (November 2010)

Volume 61 (2010): Issue 5 (September 2010)

Volume 61 (2010): Issue 4 (July 2010)

Volume 61 (2010): Issue 3 (May 2010)

Volume 61 (2010): Issue 2 (March 2010)

Volume 61 (2010): Issue 1 (January 2010)

Journal Details
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English

Search

Volume 69 (2018): Issue 1 (January 2018)

Journal Details
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English

Search

0 Articles
Open Access

Fractional-order low-pass filter with electronic tunability of its order and pole frequency

Published Online: 07 Mar 2018
Page range: 3 - 13

Abstract

Abstract

This paper presents novel solution of a fractional-order low-pass filter (FLPF). The proposed filter operates in the current mode and it is designed using third-order inverse follow-the-leader feedback topology and operational transconductance amplifiers (OTAs), adjustable current amplifiers (ACAs), auxiliary multiple-output current follower (MO-CF) as simple active elements. The filter offers the beneficial ability of the electronic control of its order and also the pole frequency thanks to electronically controlled internal parameters of OTAs and ACAs. As an example, five particular values of fractional order of the FLPF were chosen and parameters of the filter were calculated. Similarly, also electronic control of the pole frequency of the filter was studied. The design correctness and proper function of the filter are supported by simulations with CMOS models and also by experimental laboratory measurements. Comparison of the simulation results of the proposed filter for two different approximations of the parameter sα is also included.

Keywords

  • adjustable current amplifier
  • current mode
  • electronically tunable
  • fractional-order
  • FLPF
  • low-pass filter
  • operational transconductance amplifier
Open Access

Model-free adaptive speed control on travelling wave ultrasonic motor

Published Online: 07 Mar 2018
Page range: 14 - 23

Abstract

Abstract

This paper introduced a new data-driven control (DDC) method for the speed control of ultrasonic motor (USM). The model-free adaptive control (MFAC) strategy was presented in terms of its principles, algorithms, and parameter selection. To verify the efficiency of the proposed method, a speed-frequency-time model, which contained all the measurable nonlinearity and uncertainties based on experimental data was established for simulation to mimic the USM operation system. Furthermore, the model was identified using particle swarm optimization (PSO) method. Then, the control of the simulated system using MFAC was evaluated under different expectations in terms of overshoot, rise time and steady-state error. Finally, the MFAC results were compared with that of proportion iteration differentiation (PID) to demonstrate its advantages in controlling general random system.

Keywords

  • data driven control
  • model free control
  • speed control
  • ultrasonic motor
Open Access

Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism

Published Online: 07 Mar 2018
Page range: 24 - 31

Abstract

Abstract

Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.

Keywords

  • piezoelectric
  • inverse kinematics optimization
  • four-bar mechanism
  • power minimization
Open Access

Optical splitter design for telecommunication access networks with triple-play services

Published Online: 07 Mar 2018
Page range: 32 - 38

Abstract

Abstract

In this paper, we present various designs of optical splitters for access networks, such as GPON and XG-PON by ITU-T with triple-play services (ie data, voice and video). The presented designs exhibit a step forward, compared to the solutions recommended by the ITU, in terms of performance in transmission systems using WDM. The quality of performance is represented by the bit error rate and the Q-factor. Besides the standard splitter design, we propose a new length-optimized splitter design with a smaller waveguide core, providing some reduction of non-uniformity of the power split between the output waveguides. The achieved splitting parameters are incorporated in the simulations of passive optical networks. For this purpose, the OptSim tool employing Time Domain Split Step method was used.

Keywords

  • optical splitter design
  • optical fiber communication
  • optical fiber networks
  • telecommunication network reliability
  • WDM networks
Open Access

Exact analytical modeling of magnetic vector potential in surface inset permanent magnet DC machines considering magnet segmentation

Published Online: 07 Mar 2018
Page range: 39 - 45

Abstract

Abstract

Surface inset permanent magnet DC machine can be used as an alternative in automation systems due to their high efficiency and robustness. Magnet segmentation is a common technique in order to mitigate pulsating torque components in permanent magnet machines. An accurate computation of air-gap magnetic field distribution is necessary in order to calculate machine performance. An exact analytical method for magnetic vector potential calculation in surface inset permanent magnet machines considering magnet segmentation has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in polar coordinate by using sub-domain method. One of the main contributions of the paper is to derive an expression for the magnetic vector potential in the segmented PM region by using hyperbolic functions. The developed method is applied on the performance computation of two prototype surface inset magnet segmented motors with open circuit and on load conditions. The results of these models are validated through FEM method.

Keywords

  • analytical modeling
  • surface inset PM motor
  • magnet segmentation
  • sub-domain method
  • FEM
Open Access

Dual-mode quasi-logarithmic quantizer with embedded G.711 codec

Published Online: 07 Mar 2018
Page range: 46 - 51

Abstract

Abstract

The G.711 codec has been accepted as a standard for high quality coding in many applications. A dual-mode quantizer, which combines the nonlinear logarithmic quantizer for restricted input signals and G.711 quantizer for unrestricted input signals is proposed in this paper. The parameters of the proposed quantizer are optimized, where the minimal distortion is used as the criterion. It is shown that the optimized version of the proposed quantizer provides 5.4 dB higher SQNR (Signal to Quantization Noise Ratio) compared to G.711 quantizer, or equivalently it performs savings in the bit rate of approximately 0.9 bit/sample for the same signal quality. Although the complexity is slightly increased, we believe that due to the superior performance it can be successfully implemented for high-quality quantization.

Keywords

  • scalar quantization
  • G.711 standard
  • Laplacian source
  • signal to noise ratio
Open Access

Electric measurements of PV heterojunction structures a-SiC/c-Si

Published Online: 07 Mar 2018
Page range: 52 - 57

Abstract

Abstract

Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.

Keywords

  • amorphous silicon carbide
  • thin films
  • solar cell
  • impedance spectroscopy
  • equivalent circuit
Open Access

On-line determination of transient stability status using multilayer perceptron neural network

Published Online: 07 Mar 2018
Page range: 58 - 64

Abstract

Abstract

A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.

Keywords

  • power system stability
  • stability prediction
  • transient stability
  • out-of-step
  • neural network
  • Euclidean norm
Open Access

Robust PID controller design for nonlinear systems

Published Online: 07 Mar 2018
Page range: 65 - 71

Abstract

Abstract

In this paper the new approach to the design of robust PID controller for the case of nonlinear Lipschitz systems is proposed. The proposed method is based on the uncertain gain scheduling plant model and Bellman Lyapunov equation. The designed robust controller ensures parameter dependent quadratic stability and in the frame of H2 performance guaranteed cost. Examples show the effectiveness of the proposed method.

Keywords

  • robust controller
  • Lipschitz systems
  • gain scheduled controller
  • Bellman Lyapunov equation
Open Access

A fast and simple bonding method for low cost microfluidic chip fabrication

Published Online: 07 Mar 2018
Page range: 72 - 78

Abstract

Abstract

With the development of the microstructure fabrication technique, microfluidic chips are widely used in biological and medical researchers. Future advances in their commercial applications depend on the mass bonding of microfluidic chip. In this study we are presenting a simple, low cost and fast way of bonding microfluidic chips at room temperature. The influence of the bonding pressure on the deformation of the microchannel and adhesive tape was analyzed by numerical simulation. By this method, the microfluidic chip can be fully sealed at low temperature and pressure without using any equipment. The dye water and gas leakage test indicated that the microfluidic chip can be bonded without leakage or block and its bonding strength can up to 0.84 MPa.

Keywords

  • microfluidic chip
  • tape assist bonding
  • numerical simulation
Open Access

Electromagnetic compatibility of PLC adapters for in-home/domestic networks

Published Online: 07 Mar 2018
Page range: 79 - 84

Abstract

Abstract

The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [14]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

Keywords

  • PLC
  • home appliances
  • domestic newtworks
Open Access

Voltage regulation and power losses reduction in a wind farm integrated MV distribution network

Published Online: 07 Mar 2018
Page range: 85 - 92

Abstract

Abstract

A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.

Keywords

  • reactive power regulation
  • wind farm
  • IGBT power converters
  • permanent magnet synchronous generator
  • wind production
  • medium voltage distribution network
0 Articles
Open Access

Fractional-order low-pass filter with electronic tunability of its order and pole frequency

Published Online: 07 Mar 2018
Page range: 3 - 13

Abstract

Abstract

This paper presents novel solution of a fractional-order low-pass filter (FLPF). The proposed filter operates in the current mode and it is designed using third-order inverse follow-the-leader feedback topology and operational transconductance amplifiers (OTAs), adjustable current amplifiers (ACAs), auxiliary multiple-output current follower (MO-CF) as simple active elements. The filter offers the beneficial ability of the electronic control of its order and also the pole frequency thanks to electronically controlled internal parameters of OTAs and ACAs. As an example, five particular values of fractional order of the FLPF were chosen and parameters of the filter were calculated. Similarly, also electronic control of the pole frequency of the filter was studied. The design correctness and proper function of the filter are supported by simulations with CMOS models and also by experimental laboratory measurements. Comparison of the simulation results of the proposed filter for two different approximations of the parameter sα is also included.

Keywords

  • adjustable current amplifier
  • current mode
  • electronically tunable
  • fractional-order
  • FLPF
  • low-pass filter
  • operational transconductance amplifier
Open Access

Model-free adaptive speed control on travelling wave ultrasonic motor

Published Online: 07 Mar 2018
Page range: 14 - 23

Abstract

Abstract

This paper introduced a new data-driven control (DDC) method for the speed control of ultrasonic motor (USM). The model-free adaptive control (MFAC) strategy was presented in terms of its principles, algorithms, and parameter selection. To verify the efficiency of the proposed method, a speed-frequency-time model, which contained all the measurable nonlinearity and uncertainties based on experimental data was established for simulation to mimic the USM operation system. Furthermore, the model was identified using particle swarm optimization (PSO) method. Then, the control of the simulated system using MFAC was evaluated under different expectations in terms of overshoot, rise time and steady-state error. Finally, the MFAC results were compared with that of proportion iteration differentiation (PID) to demonstrate its advantages in controlling general random system.

Keywords

  • data driven control
  • model free control
  • speed control
  • ultrasonic motor
Open Access

Scanning electron microscope fine tuning using four-bar piezoelectric actuated mechanism

Published Online: 07 Mar 2018
Page range: 24 - 31

Abstract

Abstract

Scanning Electron Microscopes are extensively used for accurate micro/nano images exploring. Several strategies have been proposed to fine tune those microscopes in the past few years. This work presents a new fine tuning strategy of a scanning electron microscope sample table using four bar piezoelectric actuated mechanisms. The introduced paper presents an algorithm to find all possible inverse kinematics solutions of the proposed mechanism. In addition, another algorithm is presented to search for the optimal inverse kinematic solution. Both algorithms are used simultaneously by means of a simulation study to fine tune a scanning electron microscope sample table through a pre-specified circular or linear path of motion. Results of the study shows that, proposed algorithms were able to minimize the power required to drive the piezoelectric actuated mechanism by a ratio of 97.5% for all simulated paths of motion when compared to general non-optimized solution.

Keywords

  • piezoelectric
  • inverse kinematics optimization
  • four-bar mechanism
  • power minimization
Open Access

Optical splitter design for telecommunication access networks with triple-play services

Published Online: 07 Mar 2018
Page range: 32 - 38

Abstract

Abstract

In this paper, we present various designs of optical splitters for access networks, such as GPON and XG-PON by ITU-T with triple-play services (ie data, voice and video). The presented designs exhibit a step forward, compared to the solutions recommended by the ITU, in terms of performance in transmission systems using WDM. The quality of performance is represented by the bit error rate and the Q-factor. Besides the standard splitter design, we propose a new length-optimized splitter design with a smaller waveguide core, providing some reduction of non-uniformity of the power split between the output waveguides. The achieved splitting parameters are incorporated in the simulations of passive optical networks. For this purpose, the OptSim tool employing Time Domain Split Step method was used.

Keywords

  • optical splitter design
  • optical fiber communication
  • optical fiber networks
  • telecommunication network reliability
  • WDM networks
Open Access

Exact analytical modeling of magnetic vector potential in surface inset permanent magnet DC machines considering magnet segmentation

Published Online: 07 Mar 2018
Page range: 39 - 45

Abstract

Abstract

Surface inset permanent magnet DC machine can be used as an alternative in automation systems due to their high efficiency and robustness. Magnet segmentation is a common technique in order to mitigate pulsating torque components in permanent magnet machines. An accurate computation of air-gap magnetic field distribution is necessary in order to calculate machine performance. An exact analytical method for magnetic vector potential calculation in surface inset permanent magnet machines considering magnet segmentation has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in polar coordinate by using sub-domain method. One of the main contributions of the paper is to derive an expression for the magnetic vector potential in the segmented PM region by using hyperbolic functions. The developed method is applied on the performance computation of two prototype surface inset magnet segmented motors with open circuit and on load conditions. The results of these models are validated through FEM method.

Keywords

  • analytical modeling
  • surface inset PM motor
  • magnet segmentation
  • sub-domain method
  • FEM
Open Access

Dual-mode quasi-logarithmic quantizer with embedded G.711 codec

Published Online: 07 Mar 2018
Page range: 46 - 51

Abstract

Abstract

The G.711 codec has been accepted as a standard for high quality coding in many applications. A dual-mode quantizer, which combines the nonlinear logarithmic quantizer for restricted input signals and G.711 quantizer for unrestricted input signals is proposed in this paper. The parameters of the proposed quantizer are optimized, where the minimal distortion is used as the criterion. It is shown that the optimized version of the proposed quantizer provides 5.4 dB higher SQNR (Signal to Quantization Noise Ratio) compared to G.711 quantizer, or equivalently it performs savings in the bit rate of approximately 0.9 bit/sample for the same signal quality. Although the complexity is slightly increased, we believe that due to the superior performance it can be successfully implemented for high-quality quantization.

Keywords

  • scalar quantization
  • G.711 standard
  • Laplacian source
  • signal to noise ratio
Open Access

Electric measurements of PV heterojunction structures a-SiC/c-Si

Published Online: 07 Mar 2018
Page range: 52 - 57

Abstract

Abstract

Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.

Keywords

  • amorphous silicon carbide
  • thin films
  • solar cell
  • impedance spectroscopy
  • equivalent circuit
Open Access

On-line determination of transient stability status using multilayer perceptron neural network

Published Online: 07 Mar 2018
Page range: 58 - 64

Abstract

Abstract

A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.

Keywords

  • power system stability
  • stability prediction
  • transient stability
  • out-of-step
  • neural network
  • Euclidean norm
Open Access

Robust PID controller design for nonlinear systems

Published Online: 07 Mar 2018
Page range: 65 - 71

Abstract

Abstract

In this paper the new approach to the design of robust PID controller for the case of nonlinear Lipschitz systems is proposed. The proposed method is based on the uncertain gain scheduling plant model and Bellman Lyapunov equation. The designed robust controller ensures parameter dependent quadratic stability and in the frame of H2 performance guaranteed cost. Examples show the effectiveness of the proposed method.

Keywords

  • robust controller
  • Lipschitz systems
  • gain scheduled controller
  • Bellman Lyapunov equation
Open Access

A fast and simple bonding method for low cost microfluidic chip fabrication

Published Online: 07 Mar 2018
Page range: 72 - 78

Abstract

Abstract

With the development of the microstructure fabrication technique, microfluidic chips are widely used in biological and medical researchers. Future advances in their commercial applications depend on the mass bonding of microfluidic chip. In this study we are presenting a simple, low cost and fast way of bonding microfluidic chips at room temperature. The influence of the bonding pressure on the deformation of the microchannel and adhesive tape was analyzed by numerical simulation. By this method, the microfluidic chip can be fully sealed at low temperature and pressure without using any equipment. The dye water and gas leakage test indicated that the microfluidic chip can be bonded without leakage or block and its bonding strength can up to 0.84 MPa.

Keywords

  • microfluidic chip
  • tape assist bonding
  • numerical simulation
Open Access

Electromagnetic compatibility of PLC adapters for in-home/domestic networks

Published Online: 07 Mar 2018
Page range: 79 - 84

Abstract

Abstract

The use of programable logic controllers (PLC) technology in electrical networks 230 V causes electromagnetic radiation that interferes with other electrical equipment connected to the network [14]. Therefore, this article describes the issues of electromagnetic compatibility (EMC) of new PLC adapters used in IP broadband services in a multi-user environment. The measurements of disturbing electromagnetic field originated in PLC adapters were made in a certified laboratory EMC (laboratory of electromagnetic compatibility) in the Institute of Electrical Engineering at Faculty of Electrical Engineering and Information Technology of the Slovak University of Technology in Bratislava. The measured spectra of the radiated electromagnetic field will be compared with the results obtained when testing older PLC modems [5].

Keywords

  • PLC
  • home appliances
  • domestic newtworks
Open Access

Voltage regulation and power losses reduction in a wind farm integrated MV distribution network

Published Online: 07 Mar 2018
Page range: 85 - 92

Abstract

Abstract

A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.

Keywords

  • reactive power regulation
  • wind farm
  • IGBT power converters
  • permanent magnet synchronous generator
  • wind production
  • medium voltage distribution network