1. bookVolume 69 (2018): Issue 1 (January 2018)
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English
Open Access

Fractional-order low-pass filter with electronic tunability of its order and pole frequency

Published Online: 07 Mar 2018
Volume & Issue: Volume 69 (2018) - Issue 1 (January 2018)
Page range: 3 - 13
Received: 28 Sep 2017
Journal Details
License
Format
Journal
eISSN
1339-309X
First Published
07 Jun 2011
Publication timeframe
6 times per year
Languages
English

[1] S. Das, Functional Fractional Calculus, second ed., Springer: Berlin, 2011.10.1007/978-3-642-20545-3Search in Google Scholar

[2] T. J. Freeborn, “Comparison of (1+α) Fractional-Order Transfer Functions to Approximate Lowpass Butterworth Magnitude Responses”, Circuits, Systems, and Signal Processing, 2016, vol. 35, pp. 1983–2002.10.1007/s00034-015-0226-ySearch in Google Scholar

[3] A. Elwakil, “Fractional-Order Circuits and Systems: An Emerging Interdisciplinary Research Area”, IEEE Circuits and Systems Magazine, 2010, vol. 10, pp. 40–50.10.1109/MCAS.2010.938637Search in Google Scholar

[4] B. Maundy, A. S. Elwakil and T. J. Freeborn, “On the Practical Realization of Higher-Order Filters with Fractional Stepping”, Signal Processing, 2011, vol. 91, pp. 484–491.10.1016/j.sigpro.2010.06.018Search in Google Scholar

[5] G. Tsirimokou and C. Psychalinos, “Ultra-Low Voltage Fractional-Order Circuits using Current Mirrors”, International Journal of Circuit Theory and Applications, 2016, vol. 44, pp. 109–126..10.1002/cta.2066Open DOISearch in Google Scholar

[6] T. J. Freeborn, B. Maundy and A. S. Elwakil, “Field Programmable Analogue Array Implementation of Fractional Step Filters”, IET Circuits, Devices, 2010, vol. 4, pp. 514–524.10.1049/iet-cds.2010.0141Open DOISearch in Google Scholar

[7] G. Tsirimokou, C. Laoudias and C. Psychalinos, “0.5V Fractional-Order Companding Filters”, International Journal of Circuit Theory and Applications, 2015, vol. 43, pp. 1105–1126.10.1002/cta.1995Search in Google Scholar

[8] T. J. Freeborn, B. Maundy and A. Elwakil, “Fractional-Step Tow-Thomas Biquad Filters”, Nonlinear Theory and Its Applications,, IEICE, 2012, vol. 3, pp. 357–374.10.1587/nolta.3.357Search in Google Scholar

[9] T. Freeborn, B. Maundy and A. S. Elwakil, “Approximated Fractional Order Chebyshev Lowpass Filters”, Mathematical Problems in Engineering, 2015, pp. 1–7.10.1155/2015/832468Search in Google Scholar

[10] G. Tsirimokou, C. Psychalinos and A. S. Elwakil, “Digitally Programmed Fractional-Order Chebyshev Filters Realizations using Current-Mirrors”, In 2015 IEEE International Symposium on Circuits and Systems, (ISCAS), IEEE, 2015, pp. 2337–2340.10.1109/ISCAS.2015.7169152Search in Google Scholar

[11] F. Khateb, D. Kubánek, G. Tsirimokou and C. Psychalinos, Fractional-order filters based on low-voltage DDCCs. Microelectronics Journal, 2016, 50,, pp. 50–59.10.1016/j.mejo.2016.02.002Open DOISearch in Google Scholar

[12] A. G. Radwan, A. S. Elwakil and A. M. Soliman, “Fractional-Order Sinusoidal Oscillators: Design Procedure and Practical Examples”, IEEE Transactions on Circuits and Systems I: Regular Papers, 2008, vol. 55, pp. 2051–2063.10.1109/TCSI.2008.918196Search in Google Scholar

[13] T. J. Freeborn, “A Survey of Fractional-Order Circuit Models for Biology and Biomedicine”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, vol. 3, pp. 416–424.10.1109/JETCAS.2013.2265797Search in Google Scholar

[14] M. Sivarama Krishna, S. Das, K. Biswas and B. Goswami, “B. Fabrication of a Fractional Order Capacitor With Desired Specifications: A Study on Process Identification and Characterization”, IEEE Transactions on Electron Devices, 2011, vol. 58, pp. 4067–4073.10.1109/TED.2011.2166763Search in Google Scholar

[15] A. Soltan, A. G. Radvan and A. M. Soliman, “Fractional Order Filter with Two Fractional Elements of Dependant Orders”, Microelectronics Journal, 2012, vol. 43, pp. 818–827.10.1016/j.mejo.2012.06.009Open DOISearch in Google Scholar

[16] T. Freeborn, M. Maundy and A. S. Elwakil, “Cole Impedance Extractions from the Step-Response of a Current Excited Fruit Sample”, Computers and Electronics in Agriculture,, 2013, vol. 98, pp. 100–108.10.1016/j.compag.2013.07.017Open DOISearch in Google Scholar

[17] T. Haba, G. Loum, J. Zoueu and G. Ablart, “Use of a Component with Fractional Impedance in the Realization of an Analogical Regulator of Order 1/2”, Journal of Applied Sciences, 2008, vol. 8, pp. 59–67.10.3923/jas.2008.59.67Search in Google Scholar

[18] A. G. Radwan and K. N. Salama, “Fractional-Order RC and RL Circuits,” Circuits, Systems, and Signal Processing, 2012, vol. 31, pp. 1901–1915.10.1007/s00034-012-9432-zOpen DOISearch in Google Scholar

[19] P. Yifei, Y. Xiao, L. Ke, Z. Jiliu, Z. Ni, Z. Yi and P. Xiaoxian, “Structuring Analog Fractance Circuit for 1/2 Order Fractional Calculus”, In Proc. 6th International Conference on ASIC, 2005, pp. 1136–1139.Search in Google Scholar

[20] M. D. Ortigueira, “An Introduction to the Fractional Continuous-Time Linear Systems: the 21st Century Systems”, IEEE Circuits and Systems Magazine, 2008, vol. 8, pp. 19–26.10.1109/MCAS.2008.928419Search in Google Scholar

[21] A. S. Ali, A. G. Radwan and A. M. Soliman, “Fractional Order Butterworth Filter: Active and Passive Realizations”, IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, vol. 3, pp. 346–354.10.1109/JETCAS.2013.2266753Search in Google Scholar

[22] I. Podlubny, I. Petras, B. M. Vinagre, P. O’Leary and L’. Dorcak, “Analogue Realizations of Fractional-Order Controllers”, Nonlinear Dynamics, 2002, vol. 29, pp. 281–296.10.1023/A:1016556604320Open DOISearch in Google Scholar

[23] G. Carlson and C. Halijak, “Approximation of Fractional Capacitors (1/s)ˆ(1/n) by a Regular Newton Process”, IEEE Transactions on Circuit Theory, 1964, vol. 11, pp. 210–213.10.1109/TCT.1964.1082270Search in Google Scholar

[24] G. Tsirimokou, C. Psychalinos, A. Allagui, and A. S. Elwakil, “Simple Non-Impedance-Based Measuring Technique for Supercapacitors”, Electronics Letters,, 2015, vol. 51, pp. 1699–1701.10.1049/el.2015.2395Search in Google Scholar

[25] D. Kubanek, F. Khateb, G. Tsirimokou and C. Psychalinos, “Practical Design and Evaluation of Fractional-Order Oscillator Using Differential Voltage Current Conveyors”, Circuits, Systems, and Signal Processing, 2016, vol. 35, pp. 2003–2016.10.1007/s00034-016-0243-5Search in Google Scholar

[26] T. Freeborn, B. Maundy and A. Elwakil, “Extracting the Parameters of the Double-Dispersion Cole Bioimpedance Model from Magnitude Response Measurements”, Medical & Biological Engineering & Computing, 2014, vol. 52, pp. 749–758.10.1007/s11517-014-1175-525023892Open DOISearch in Google Scholar

[27] J. Dvorak, L. Langhammer, J. Jerabek, J. Koton, R. Sotner and J. Polak, “Electronically Tunable Fractional-Order Low-Pass Filter with Current Followers”, Journal of Circuits, Systems, and Computers, 2018, vol. 27, in press.10.1142/S0218126618500329Open DOISearch in Google Scholar

[28] J. Jerabek, R. Sotner, J. Dvorak, J. Polak, D. Kubanek, J. Koton and N. Herencsar, “Reconfigurable Fractional-Order Filter with Electronically Controllable Slope of Attenuation, Pole Frequency and Type of Approximation”, Journal of Circuits, Systems, and Computers, 2017, vol 26, pp. 1–21.10.1142/S0218126617501572Search in Google Scholar

[29] M. C. Tripathy, D. Mondal, K. Biswas and S. Sen, “Experimental Studies on Realization of Fractional Inductors and Fractional-Order Bandpass Filters”, International Journal of Circuit Theory and Applications, 2015, vol.43, pp. 1183–1196.10.1002/cta.2004Search in Google Scholar

[30] G. Tsirimokou, S. Koumousi and C. Psychalinos, “Design of Fractional-Order Filters Using Current Feedback Operational Amplifiers”, In Proc. 3rd Pan-Hellenic conference on electronics and telecommunications (PACET 2015), 2015.Search in Google Scholar

[31] R. Sotner, J. Jerabek, J. Petrzela and T. Dostal, “Simple Approach for Synthesis of Fractional-Order Grounded Immittances Based on OTAs”, In Proc. 39th international conference on telecommunications and signal processing (TSP 2016), 2016, pp. 563–568.10.1109/TSP.2016.7760944Search in Google Scholar

[32] L. Langhammer, R. Sotner, J. Dvorak, O. Domansky, J. Jerabek and J. Uher, “A (1 + α) Low-Pass Fractional-Order Frequency Filter with Adjustable Parameters”, In Proc. 40th international conference on telecommunications and signal processing (TSP 2017), 2017, pp. 724–729.10.1109/TSP.2017.8076083Search in Google Scholar

[33] R. Verma, N. Pandey and R. Pandey, “Electronically Tunable Fractional Order Filter”, Arabian Journal for Science and Engineering, 2017, vol. 42, pp. 3409–3422.10.1007/s13369-017-2500-8Open DOISearch in Google Scholar

[34] J. Jerabek and K. Vrba, “SIMO Type Low-Input and High-Output Impedance Current-Mode Universal Filter Employing Three Universal Current Conveyors”, International Journal of Electronics and Communications (AEU), 2010, vol. 64, pp. 588–593.10.1016/j.aeue.2009.03.002Open DOISearch in Google Scholar

[35] R. Sotner, N. Herencsar, J. Jerabek, R. Prokop, A. Kartci, T. Dostaland K. Vrba, “Z-Copy Controlled-Gain Voltage Differencing Current Conveyor: Advanced Possibilities in Direct Electronic Control of First-Order Filter”, Elektronika ir elektrotechnika, 2014, vol. 20, pp. 77–83.10.5755/j01.eee.20.6.7272Search in Google Scholar

[36] J. Jerabek, R. Sotner and K. Vrba, “Electronically Adjustable Triple-Input Single-Output Filter with Voltage Differencing Transconductance Amplifier”, Revue Roumaine des Sciences Techniques – Serie Électrotechnique et Énergétique, 2015, vol. 59, pp. 163–172.Search in Google Scholar

[37] J. Jerabek, R. Sotner and K. Vrba, “General Current-Mode Filtering Structure with Controllable Current Active Elements”, In Proc. 36th international conference on telecommunications and signal processing (TSP 2013), 2013, pp. 402–406.10.1109/TSP.2013.6613962Search in Google Scholar

[38] J. Polak, J. Jerabek, L. Langhammer, R. Sotner, J. Dvorak and D. Panek, “Digitally Controllable Current Amplifier and Current Conveyors in Practical Application of Controllable Frequency Filter”, Journal of Electrical Engineering, 2016, vol. 67, pp. 261–266.10.1515/jee-2016-0038Search in Google Scholar

[39] C. Toumazou, F. J. Lidgey and D. G. Haigh, “Analog IC Design: the Current-Mode Approach”, Institution of Electrical Engineers: London, 1996.Search in Google Scholar

[40] EL2082 (Elantec) Current-mode multiplier (datasheet), Intersil, 1996.Search in Google Scholar

[41] OPA860 Wide Bandwidth Operational Transconductance Amplifier (datasheet), Texas Instruments, 2008.Search in Google Scholar

[42] OPA861 Wide Bandwidth Operational Transconductance Amplifier (datasheet), Texas Instruments; 2013.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo