Accès libre

A kinematic model of a humanoid lower limb exoskeleton with pneumatic actuators

 et   
01 avr. 2022
À propos de cet article

Citez
Télécharger la couverture

Agarwal Priyanshu, Deshpande Ashish A., Exoskeletons: State-of-the-Art, Design, Challenges, and Future Directions, Human Performance Optimization, 2018, DOI: 10.1093/oso/9780190455132.003.0011. Search in Google Scholar

Berbyuk V.E., Lytvyn B.A., Mathematical modeling of human walking on the basis of optimization of controlled processes in biodynamical systems, J. Math. Sci., 2001, 104, 1575–1586, https://doi.org/10.1023/A:1011352207020 Search in Google Scholar

Caldwell Darwin G., Medrano-Cerda G.A., Bowler C.J., Investigation of bipedal robot locomotion using pneumatic muscle actuators, Proceedings – IEEE International Conference on Robotics and Automation, 1997, 1, 799–804, DOI: 10.1109/ROBOT.1997.620132. Search in Google Scholar

Daerden F., Lefeber D., Verrelst B., Van Ham R., Pneumatic artificial muscles: Actuators for robotics and automation, International Conference on Advanced Intelligent Mechatronics, Proceedings, 2001, 2, 738–743, DOI: 10.1109/AIM.2001.936758. Search in Google Scholar

Głowiński S., Krzyżyński T., Modelling of the ejection process in a symmetrical flight, Journal of Theoretical and Applied Mechanics, 2013, 51 (3), 775–785. Search in Google Scholar

Głowiński S., Łosiński, .; Kowiański P., Waśkow M., Bryndal A., Grochulska A., Inertial Sensors as a Tool for Diagnosing Discopathy Lumbosacral Pathologic Gait: A Preliminary Research, Diagnostics, 2020, 10, 342. Search in Google Scholar

Głowiński S., Obst M., Majdanik S., Potocka-Banaś B., Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators, Sensors, 2021, 21, 10, 3432. Search in Google Scholar

Grosu V., Rodriguez-Guerrero C., Grosu S., Vanderborght B., Lefeber D., Design of smart modular variable stiffness actuators for robotic-assistive devices, IEEE/ASME Trans. Mechatron., 2017, 22, 1777–1785. Search in Google Scholar

Hamdi, Mohammad.; Awad, Mohammed, Ibrahim.; Abdelhammed, Magdy M.; Tolbah, Farid A.: Lower limb gait activity recognition using Inertial Measurement Units for rehabilitation robotics, Advanced Robotics (ICAR), 2015, DOI: 10.1109/ICAR.2015.7251474. Search in Google Scholar

Huang Tu X., He J., Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 926–935, DOI: 10.1109/TSMC.2015.2497205. Search in Google Scholar

Hunter L.C., Hendrix E.C., Dean J.C., The cost of walking downhill: Is the preferred gait energetically optimal?, Journal of Biomechanics, 2010, 43 (10), 1910–1915, DOI: 10.1016/j.jbiomch.2010.03.030. Search in Google Scholar

Inertia Technology: ProMove MINI, URL https://inertiatechnology.com/product/motion-capture-promove-mini/ (Accessed: 10.06.2021). Search in Google Scholar

Jacob, Caroline E.M.; Kluge F., Kugler P.F.-X., Estimation of the Knee Flexion-Extension Angle During Dynamic Sport Motions Using Body-worn Inertial Sensors, BodyNets 13 Proceedings of the 8th International Conference on Body Area Networks, 2013, 289–295, https://doi.org/10.4108/icst.bodynets.2013.253613 Search in Google Scholar

Kazerooni H., Steger R., Huang Lihua, Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX), International Journal of Robotics Research, 2006, 25, https://doi.org/10/1177/0278364906065505 Search in Google Scholar

Kobielarz M., Szotek S., Głowacki M., Dawidowicz J., Pezowicz C., Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs, J. Mech. Behav. Biomed. Mater., 2016, 62, 45–56, DOI: 10.1016/j.jmbbm.2016.04.033. Search in Google Scholar

Laroche, Dain P.; Cook, Summer B., Mackala K., Strength Asymmetry Increases Gait Asymmetry and Variability in Older Women, Med. Sci. Sport. Exerc., 2012, 44, 11, 2172–2181, DOI: 10.1249/MSS.0b013e31825e1d31. Search in Google Scholar

Leclair J., Pardoel S., Helal A., Doumit M., Development of an unpowered ankle exoskeleton for walking assist, Disabil. Rehabil. Assist. Technol., 2020, 15 (1), 1–13, DOI: 10.1080/17483107.2018.1494218. Search in Google Scholar

Li I. Hsum; Lin, Yi Shan; Lee, Lian Wang; Lin, Wei Ting: Design, manufacturing, and control of a pneumatic-driven passive robotic gait training system for muscle-weakness in a lower limb, Sensors, 2021, 21 (20), 6709, DOI: 10.3390/s21206709. Search in Google Scholar

Liu Q., Zuo J., Zhu C., Xie S.Q., Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art, Future Generation Computer Systems, 2020, 113, 620–634, https://doi.org/10/1016/j.future.2020.06.046 Search in Google Scholar

Mackay G., Injury to pedestrians, A Rep. Road Accid. Res. Proj. to Sci. Res. Counc., 1972, 3, 1–26. Search in Google Scholar

Milanowski H., Pilat A., Comparison of Identified and SimScape Model of Human Leg Motion, 2020 International Conference Mechatronic Systems and Materials (MSM), IEEE, 2020 – ISBN 978-1-7281-6956-9, 1–6, DOI: 10.1109/MSM49833.2020.9201736. Search in Google Scholar

Norris J.A., Granata K.P., Mitros M.R., Byrne E.M., Marsh A.P., Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults, Gait and Posture, 2007, 35 (4), 620–627, DOI: 101016/j.gaitpost.2006.07.002. Search in Google Scholar

Onyshko S., Winter D.A., A mathematical model for the dynamics of human locomotion, J. Biomech., 1980, 13, 4, DOI: 10.1016/0021-9290(80)90016-0. Search in Google Scholar

Petre I., Deaconescu A., Rogozea L., Deaconescu T.I., Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles, International Journal of Advanced Robotic Systems, 2014, https://doi.org/10.5772/58693. Search in Google Scholar

Pons J.L. (Ed.), Wearable Robots, John Wiley & Sons, Ltd., Chichester, UK, 2008, ISBN 9780470987667. Search in Google Scholar

Ptak M., Pedestrian safety: a new method to assess pedestrian kinematics, Transport, 2019, 34, 41–51. Search in Google Scholar

Rocon E., Pons J.L., Exoskeletons in Rehabilitation Robotics, Springer Tracts in Advanced Robotics, 69. Berlin, Heidelberg, Springer, Berlin–Heidelberg, 2011, ISBN 978-3-642-17658-6. Search in Google Scholar

Rojek A., Mika A., Oleksy Ł., Stolarczyk A., Kielnar R., Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial, Front. Neurol., 2020, 10, 1344, DOI: 10.3389/fneur.2019.01344. Search in Google Scholar

Sawicki G.S., Ferris D.P., A pneumatically powered kneeankle-foot orthosis (KAFO) with myoelectric activation and inhibition, J. Neuroeng. Rehab., 2009, 6, 23–29, DOI: 10.1186/1743-000306-23. Search in Google Scholar

Shaheen R., Doumit M., Helal A., Design and characterization of a hyperelastic tubular soft composite, J. Mech. Behav. Biomed. Mater., 2017, 75, 228–235, DOI: 10.1016/j.jmbbm.2017.07.031. Search in Google Scholar

Shorter K.A., Kogler G.F., Loth E., Durfee W.K., Hsiao-Wecksler E.T., A portable powered ankle-foot orthosis for rehabilitation, J. Rehabil. Res. Dev., 2011, 48 (4), 459–472, DOI: 10.1682/jrrd.2010.04.0054. Search in Google Scholar

Tondu B., Modelling of the McKibben artificial muscle: A review, Journal of Intelligent Material Systems and Structures, 2012, 23 (3), 225–253, DOI: 10.1177/1045389X11435435. Search in Google Scholar

Valayil, Tony Punnoose; Augustine, Rose Shaji., Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients, Acta of Bioeng. Biomech., 2021, 23 (3), 175–189, PMID: 34978313. Search in Google Scholar

Vaughan C.L., Biomechanics of running gait, Crit. Rev. Biomed. Eng., 1984, 12 (1), 1–48, PMID: 6394212. Search in Google Scholar

Veale, Allan Joshua; Xie, Shane Quan, Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies, Med. Eng. Phys., 2016, 38 (4), 317–325, DOI: 10.1016/j.medengphy.2016.01.010. Search in Google Scholar

Woernle C., Med. Mehrkörpersysteme: Eine Einführung in die Kinematik und Dynamik von Systemen starrer Körper, Springer, 2011, ISBN-10:3662466864. Search in Google Scholar

Wu Ge, Siegler Sorin, Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., D’Lima D.D., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine, J. Biomech., 2002, 35 (4), 543–548, DOI: 10.1016/s0021-9290(01)00222-6. Search in Google Scholar

Ye, Xin; Chen, Chunjie; Shi, Yanguo; Chen, Lingxing; Wang, Zhuo; Zhang, Zhewen; Liu, Yida; Wu, Xinyu, A Time Division Multiplexing Inspired Lightweight Soft Exoskeleton for Hip and Ankle Joint Assistance, Micromachines, 2021, 12 (10), 1150, DOI: 10.22290/mi12101150. Search in Google Scholar

Zhang, Jia Fan; Yang, Can Jun; Chen, Ying; Zhang, Yu; Dong, Yi Ming, Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton, Mechatronics, 2008, 18 (8), 448–457, DOI: 10.1016/j.mechatronics.2008.02.006. Search in Google Scholar

Żuk M., Pezowicz C., Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model, Appl. Bionics Biomech., 2015, 503713, DOI: 10.1155/2015/503713. Search in Google Scholar