This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Agarwal Priyanshu, Deshpande Ashish A., Exoskeletons: State-of-the-Art, Design, Challenges, and Future Directions, Human Performance Optimization, 2018, DOI: 10.1093/oso/9780190455132.003.0011.Search in Google Scholar
Berbyuk V.E., Lytvyn B.A., Mathematical modeling of human walking on the basis of optimization of controlled processes in biodynamical systems, J. Math. Sci., 2001, 104, 1575–1586, https://doi.org/10.1023/A:1011352207020Search in Google Scholar
Caldwell Darwin G., Medrano-Cerda G.A., Bowler C.J., Investigation of bipedal robot locomotion using pneumatic muscle actuators, Proceedings – IEEE International Conference on Robotics and Automation, 1997, 1, 799–804, DOI: 10.1109/ROBOT.1997.620132.Search in Google Scholar
Daerden F., Lefeber D., Verrelst B., Van Ham R., Pneumatic artificial muscles: Actuators for robotics and automation, International Conference on Advanced Intelligent Mechatronics, Proceedings, 2001, 2, 738–743, DOI: 10.1109/AIM.2001.936758.Search in Google Scholar
Głowiński S., Krzyżyński T., Modelling of the ejection process in a symmetrical flight, Journal of Theoretical and Applied Mechanics, 2013, 51 (3), 775–785.Search in Google Scholar
Głowiński S., Łosiński, .; Kowiański P., Waśkow M., Bryndal A., Grochulska A., Inertial Sensors as a Tool for Diagnosing Discopathy Lumbosacral Pathologic Gait: A Preliminary Research, Diagnostics, 2020, 10, 342.Search in Google Scholar
Głowiński S., Obst M., Majdanik S., Potocka-Banaś B., Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators, Sensors, 2021, 21, 10, 3432.Search in Google Scholar
Grosu V., Rodriguez-Guerrero C., Grosu S., Vanderborght B., Lefeber D., Design of smart modular variable stiffness actuators for robotic-assistive devices, IEEE/ASME Trans. Mechatron., 2017, 22, 1777–1785.Search in Google Scholar
Hamdi, Mohammad.; Awad, Mohammed, Ibrahim.; Abdelhammed, Magdy M.; Tolbah, Farid A.: Lower limb gait activity recognition using Inertial Measurement Units for rehabilitation robotics, Advanced Robotics (ICAR), 2015, DOI: 10.1109/ICAR.2015.7251474.Search in Google Scholar
Huang Tu X., He J., Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2016, 46, 926–935, DOI: 10.1109/TSMC.2015.2497205.Search in Google Scholar
Hunter L.C., Hendrix E.C., Dean J.C., The cost of walking downhill: Is the preferred gait energetically optimal?, Journal of Biomechanics, 2010, 43 (10), 1910–1915, DOI: 10.1016/j.jbiomch.2010.03.030.Search in Google Scholar
Inertia Technology: ProMove MINI, URL https://inertiatechnology.com/product/motion-capture-promove-mini/ (Accessed: 10.06.2021).Search in Google Scholar
Jacob, Caroline E.M.; Kluge F., Kugler P.F.-X., Estimation of the Knee Flexion-Extension Angle During Dynamic Sport Motions Using Body-worn Inertial Sensors, BodyNets 13 Proceedings of the 8th International Conference on Body Area Networks, 2013, 289–295, https://doi.org/10.4108/icst.bodynets.2013.253613Search in Google Scholar
Kazerooni H., Steger R., Huang Lihua, Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX), International Journal of Robotics Research, 2006, 25, https://doi.org/10/1177/0278364906065505Search in Google Scholar
Kobielarz M., Szotek S., Głowacki M., Dawidowicz J., Pezowicz C., Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs, J. Mech. Behav. Biomed. Mater., 2016, 62, 45–56, DOI: 10.1016/j.jmbbm.2016.04.033.Search in Google Scholar
Laroche, Dain P.; Cook, Summer B., Mackala K., Strength Asymmetry Increases Gait Asymmetry and Variability in Older Women, Med. Sci. Sport. Exerc., 2012, 44, 11, 2172–2181, DOI: 10.1249/MSS.0b013e31825e1d31.Search in Google Scholar
Leclair J., Pardoel S., Helal A., Doumit M., Development of an unpowered ankle exoskeleton for walking assist, Disabil. Rehabil. Assist. Technol., 2020, 15 (1), 1–13, DOI: 10.1080/17483107.2018.1494218.Search in Google Scholar
Li I. Hsum; Lin, Yi Shan; Lee, Lian Wang; Lin, Wei Ting: Design, manufacturing, and control of a pneumatic-driven passive robotic gait training system for muscle-weakness in a lower limb, Sensors, 2021, 21 (20), 6709, DOI: 10.3390/s21206709.Search in Google Scholar
Liu Q., Zuo J., Zhu C., Xie S.Q., Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art, Future Generation Computer Systems, 2020, 113, 620–634, https://doi.org/10/1016/j.future.2020.06.046Search in Google Scholar
Mackay G., Injury to pedestrians, A Rep. Road Accid. Res. Proj. to Sci. Res. Counc., 1972, 3, 1–26.Search in Google Scholar
Milanowski H., Pilat A., Comparison of Identified and SimScape Model of Human Leg Motion, 2020 International Conference Mechatronic Systems and Materials (MSM), IEEE, 2020 – ISBN 978-1-7281-6956-9, 1–6, DOI: 10.1109/MSM49833.2020.9201736.Search in Google Scholar
Norris J.A., Granata K.P., Mitros M.R., Byrne E.M., Marsh A.P., Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults, Gait and Posture, 2007, 35 (4), 620–627, DOI: 101016/j.gaitpost.2006.07.002.Search in Google Scholar
Onyshko S., Winter D.A., A mathematical model for the dynamics of human locomotion, J. Biomech., 1980, 13, 4, DOI: 10.1016/0021-9290(80)90016-0.Search in Google Scholar
Petre I., Deaconescu A., Rogozea L., Deaconescu T.I., Orthopaedic Rehabilitation Device Actuated with Pneumatic Muscles, International Journal of Advanced Robotic Systems, 2014, https://doi.org/10.5772/58693.Search in Google Scholar
Pons J.L. (Ed.), Wearable Robots, John Wiley & Sons, Ltd., Chichester, UK, 2008, ISBN 9780470987667.Search in Google Scholar
Ptak M., Pedestrian safety: a new method to assess pedestrian kinematics, Transport, 2019, 34, 41–51.Search in Google Scholar
Rocon E., Pons J.L., Exoskeletons in Rehabilitation Robotics, Springer Tracts in Advanced Robotics, 69. Berlin, Heidelberg, Springer, Berlin–Heidelberg, 2011, ISBN 978-3-642-17658-6.Search in Google Scholar
Rojek A., Mika A., Oleksy Ł., Stolarczyk A., Kielnar R., Effects of Exoskeleton Gait Training on Balance, Load Distribution, and Functional Status in Stroke: A Randomized Controlled Trial, Front. Neurol., 2020, 10, 1344, DOI: 10.3389/fneur.2019.01344.Search in Google Scholar
Sawicki G.S., Ferris D.P., A pneumatically powered kneeankle-foot orthosis (KAFO) with myoelectric activation and inhibition, J. Neuroeng. Rehab., 2009, 6, 23–29, DOI: 10.1186/1743-000306-23.Search in Google Scholar
Shaheen R., Doumit M., Helal A., Design and characterization of a hyperelastic tubular soft composite, J. Mech. Behav. Biomed. Mater., 2017, 75, 228–235, DOI: 10.1016/j.jmbbm.2017.07.031.Search in Google Scholar
Shorter K.A., Kogler G.F., Loth E., Durfee W.K., Hsiao-Wecksler E.T., A portable powered ankle-foot orthosis for rehabilitation, J. Rehabil. Res. Dev., 2011, 48 (4), 459–472, DOI: 10.1682/jrrd.2010.04.0054.Search in Google Scholar
Tondu B., Modelling of the McKibben artificial muscle: A review, Journal of Intelligent Material Systems and Structures, 2012, 23 (3), 225–253, DOI: 10.1177/1045389X11435435.Search in Google Scholar
Valayil, Tony Punnoose; Augustine, Rose Shaji., Kinematics and workspace analysis of a robotic device for performing rehabilitation therapy of upper limb in stroke-affected patients, Acta of Bioeng. Biomech., 2021, 23 (3), 175–189, PMID: 34978313.Search in Google Scholar
Vaughan C.L., Biomechanics of running gait, Crit. Rev. Biomed. Eng., 1984, 12 (1), 1–48, PMID: 6394212.Search in Google Scholar
Veale, Allan Joshua; Xie, Shane Quan, Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies, Med. Eng. Phys., 2016, 38 (4), 317–325, DOI: 10.1016/j.medengphy.2016.01.010.Search in Google Scholar
Woernle C., Med. Mehrkörpersysteme: Eine Einführung in die Kinematik und Dynamik von Systemen starrer Körper, Springer, 2011, ISBN-10:3662466864.Search in Google Scholar
Wu Ge, Siegler Sorin, Allard P., Kirtley C., Leardini A., Rosenbaum D., Whittle M., D’Lima D.D., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion – part I: ankle, hip, and spine, J. Biomech., 2002, 35 (4), 543–548, DOI: 10.1016/s0021-9290(01)00222-6.Search in Google Scholar
Ye, Xin; Chen, Chunjie; Shi, Yanguo; Chen, Lingxing; Wang, Zhuo; Zhang, Zhewen; Liu, Yida; Wu, Xinyu, A Time Division Multiplexing Inspired Lightweight Soft Exoskeleton for Hip and Ankle Joint Assistance, Micromachines, 2021, 12 (10), 1150, DOI: 10.22290/mi12101150.Search in Google Scholar
Zhang, Jia Fan; Yang, Can Jun; Chen, Ying; Zhang, Yu; Dong, Yi Ming, Modeling and control of a curved pneumatic muscle actuator for wearable elbow exoskeleton, Mechatronics, 2008, 18 (8), 448–457, DOI: 10.1016/j.mechatronics.2008.02.006.Search in Google Scholar
Żuk M., Pezowicz C., Kinematic Analysis of a Six-Degrees-of-Freedom Model Based on ISB Recommendation: A Repeatability Analysis and Comparison with Conventional Gait Model, Appl. Bionics Biomech., 2015, 503713, DOI: 10.1155/2015/503713.Search in Google Scholar