1. bookVolume 65 (2019): Edition 2 (June 2019)
Détails du magazine
Première parution
14 Dec 2009
4 fois par an
Accès libre

Assessment of phenotypic plasticity of spruce species Picea abies (L.) Karst. and P. obovata (Ledeb.) on provenances tests in European North of Russia

Publié en ligne: 09 May 2019
Volume & Edition: Volume 65 (2019) - Edition 2 (June 2019)
Pages: 121 - 128
Détails du magazine
Première parution
14 Dec 2009
4 fois par an

Beaulieu, J., Rainville, A., 2005: Adaptation to climate change: Genetic variation is both a short- and a long-term solution. The Forestry Chronicle, 81:704–709.10.5558/tfc81704-5Search in Google Scholar

Becker, H. C., 1981: Correlation among some statistical measures of phenotypic stability. Euphytica, 30: 835–840.10.1007/BF00038812Search in Google Scholar

Besedina, T. D., Tutberidze, Ts. V., Dobezhina S. V., 2014: Ecological characteristics of the introduced cultivars of Actinidia deliciosa in Russian humid subtropics. Nauchnyj zhurnal KubGAU, 100:1275–1286. [in Russian].Search in Google Scholar

Demina N. A., Faizulin D. Kh., Nakvasina, E. N., 2013: Specification of the boundaries of forest seeding of spruce in the European North. Lesnoj Vestnik, 2:23–28. [in Russian].Search in Google Scholar

Dering, M., Lewandowski, A., 2007: Postglacial re-colonization of Norway spruce (Picea abies [L.] Karsten) in Poland based on molecular markers In: Conference session abstracts “Norway Spruce in the Conservation of Forest Ecosystems in Europe”, September 3–5, 2007, Warszawa, 37 p.Search in Google Scholar

Eberhart, S. A., Russell, W. A., 1966: Stability parameters for comparing varieties. Crop Science, 6:36–42.10.2135/cropsci1966.0011183X000600010011xSearch in Google Scholar

Faizulin, D. Kh., Artemjeva, N. R., Senkov, A. O., 2011: Pine and spruce provenance tests in the middle and southern subzones of the taiga of the European part of the Russian Federation. In: Results of scientific research work of “SevNIILKh” for 2005–2009. Arkhangelsk, p. 23–27. [in Russian].Search in Google Scholar

Garzón, M. B., Alía, R., Robson, T. M., Zavala, M. A., 2011: Intra-specific variability and plasticity influence potential tree species distributions under climate change. Global Ecology and Biogeography, 20:766–778.10.1111/j.1466-8238.2010.00646.xSearch in Google Scholar

Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A., Merila, J., 2008: Climate change and evolution: disentangling environmental and genetic responses. Molecular Ecology, 17:167–178.10.1111/j.1365-294X.2007.03413.x18173499Search in Google Scholar

Gomez-Mestre, I., Jovani, R., 2013: A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proceedings of the Royal Society B: Biological Sciences, https://doi.org/10.1098/rspb.2013.1869.10.1098/rspb.2013.1869379048424068357Ouvrir le DOISearch in Google Scholar

Gömöry, D., Longauer, R., Hlásny, T., Pacalaj, M., Strmeň, S., Krajmerová, D., 2012: Adaptation to common optimum in different populations of Nor-way spruce (Picea abies Karst.). European Journal of Forest Research, 131:401–411.10.1007/s10342-011-0512-6Search in Google Scholar

Gulnyashkin, A. V., Anashenkov, S. S., Varlamov, D. V., 2014: Study results of ecological adaptability of new early ripening hybrids of maize grain farm in Russia. Zernovoe Khozyajstvo Rossii, 4:31–36. [in Russian].Search in Google Scholar

Iroshnikov, A. I. 2002: On the concept and the program of genetic monitoring of forest woody plant populations. Lesovedenie, 1:58–64. [in Russian].Search in Google Scholar

Kang, M. S., Miller, J. D., Darrah, L. L., 1987: A note on relationship between stability variance and ecovalence. Journal of Heredity, 78:107.10.1093/oxfordjournals.jhered.a110322Search in Google Scholar

Kapeller, S., Lexer, M. J., Geburek, T., Hiebl, J., Schueler, S., 2012: Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management, 271:46–57.10.1016/j.foreco.2012.01.039Search in Google Scholar

Kapeller, S., Schüler, S., 2012: Alternative, adapted seed sources handbook & map of trans-alpine provenance regions. Federal Research and Training Centre for Forests, Natural Hazards and Landscape, Vienna, 8 p.Search in Google Scholar

Krasnova, Y. S., Shamanin, V. P., Petukhovsky, S. L., Kirilyuk, L. M., 2014: Ecological plasticity of grades of the soft springwheat in the conditions of the southern forest-steppe of Western Siberia. Sovremennye Problemy Nauki i Obrazovaniya. 6:1633. [in Russian].Search in Google Scholar

Korzun, O. S., Bruilo, A. S., 2011: Adaptive features of plant breeding and seed crops. GSAU, Grodno, 140 p. [in Russian].Search in Google Scholar

Lindgren, D., Persson, A., 1995: Vitalization of results from provenance tests. In: Pälvinen, R., Vanclay, J., Minna, S. (eds.): Caring for the Forest: Research in a Changing World. IUFRO XX World Congress, August 6–12 1995, Tampere, Finland, 249 p.Search in Google Scholar

Mátyás, Cs., 2006: Migratory, genetic and phenetic response potential of forest tree populations facing climate change. Acta Silvatica et Lignaria Hungarica, 2:33–46.Search in Google Scholar

Melnikova, M. N., Petrov, N. B., Lomov, A. A., la Porta, N., Politov, D. V., 2012: Testing microsatellite primer with different populations of Eurasian spruces Picea abies (L.) Karst. and Picea obovata (Ledeb.). Russian Journal of Genetics, 48:562–566.10.1134/S1022795412050158Search in Google Scholar

Nakvasina, E. N., Yudina, O. A., Prozherina, N. A., Kamalova, I. I., Minin, N. S., 2008: Provenance test in gene-ecological studies in the European North. Arkhangelsk, 307 p. [in Russian].Search in Google Scholar

Nakvasina, E. N., 2003: Provenance tests of Scots pine (Pinus sylvestris L.) as a natural model of imitation of climatic changes. Vestnik Pomorskogo Universiteta, 2:48–53. [in Russian].Search in Google Scholar

Nakvasina, E. N., 2014: Changes in the generic sphere of Scots pine in the imitation of climate warming. Izvestiya Sankt-Peterburgskoj Lesotekhnicheskoj Akademii, 209:114–125. [in Russian].Search in Google Scholar

Nakvasina, E. N., Tarkhanov, S. N., Ulissova, N. V., Sizov, I. I., Bedritskaya, T. V., 1990: Northern forests: state, dynamics, anthropogenic impact. In: Pisarenko, A. I. (ed.): Proceedings of international conference Arkhangelsk, (Russia): USSR State Forest Agency, 2:131–140. [in Russian].Search in Google Scholar

Nakvasina, E. N., Gvozdukhina, O. A., 2005: An assessment of the state and growth of pine and spruce provenance tests in the Arkhangelsk Region. Problems of Forest Science and Forestry. Proceedings of conference Arkhangelsk (Russia): AGTU, p. 58–63. [in Russian].Search in Google Scholar

Nakvasina, E. N., Yudina, O. A., Pokatilo, A. V., 2016: Growth and reproductive reactions Picea abies (L.) Karst. × P. obovata Ledeb. in simulated climate warming. Arctic Environmental Research, 1:89–96. [in Russian].10.17238/issn2227-6572.2016.1.89Search in Google Scholar

O’Neill, G. A., Hamann, A., Wang, T., 2008: Accounting for population variation improves estimates of the impact of climate change on species growth and distribution. Journal of Applied Ecology, 45:1040–1049.10.1111/j.1365-2664.2008.01472.xSearch in Google Scholar

Orlova, L. V., Egorov, A. A., 2010: By taxonomy and geographical distribution of Finnish spruce (Picea fennica (Regel) Kom., Pinaceae). Novosti Sistematiki Vysshykh Rastenij, 42:5–23. [in Russian].Search in Google Scholar

Persson, B., 1998: Will climate change affect the optimal choice of Pinus sylvestris provenances? Silva Fennica, 32:121–128.10.14214/sf.690Search in Google Scholar

Petrov, S. A., 1984: Recommendations for the use of genetic and statistical methods in the selection of forest species on productivity. Voronezh, 43 p. [in Russian].Search in Google Scholar

Petrov, S. A., 1987: Genetic resources of forest-forming species, ways of their formation and rational use. Lesorazvedenie i lesomelioratsiya, 1:1–30. [in Russian].Search in Google Scholar

Popov, P. P., 2005. Spruce European and Siberian. Science, Novosibirsk, 231 p. [in Russian].Search in Google Scholar

Potokina, E. K., Kiseleva, A. A., Nikolaeva, M. A., Ivanov, S. A., Uljanich, P. S., Potokin, A. F., 2015: Analysis of polymorphism of organelle DNA to elucidate the phylogeography of Norway spruce in the East European Plain. Russian Journal of Genetics: Applied Research, 5:430–439.10.1134/S2079059715040176Search in Google Scholar

Pravdin, L. F., 1975: Norway spruce and Siberian spruce in the USSR. Science, Moscow, 176 p. [in Russian].Search in Google Scholar

Price, T. D., Qvarnström, A., Irwin, D. E., 2003: The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society B: Biological Sciences, 270:1433–1440.10.1098/rspb.2003.2372169140212965006Search in Google Scholar

Prokazin, E. P., 1972: Program and methods of work. The study of available and creation of new provenance trial. VNIILM, Pushkino, 52 p. [in Russian].Search in Google Scholar

Rodin, A. R., Prokazin, A. E. 1996: About study problems of provenance trial of basic forest species. Lesnoe khozjajstvo, 4:16–18. [in Russian].Search in Google Scholar

Rodin, A. R., Prokazin, A. E., 1997: Study of geographic variation of the main forest-forming species. In: Kharin, O. A. (ed.): Forest use and reproduction of forest resources, Moscow, p. 70–75. [in Russian].Search in Google Scholar

Rone, V. M., 1979: Methods of genetic analysis and selection in populations of spruce. Doctoral Thesis in Biology, Institute of General Genetics of USSR Academy of Sciences, Moscow, 36 p. [in Russian].Search in Google Scholar

Savolainen, O., Bokma, F., Garcia-Gil, R., Repo, T., 2004: Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. Forest Ecology and Management, 197:79–89.10.1016/j.foreco.2004.05.006Search in Google Scholar

Scapim, C. A., Oliveira, V. R., Brassini, A. de L., Cruz, C. D., de Bastos Andrade, C. A., Gonçalves Vidigal, M. C., 2000: Yield stability in maize (Zea mays L.) and correlations among the parameters of the Eberhart and Russell, Lin and Binns and Huehn models. Genetics and Molecular Biology, 23:387–393.10.1590/S1415-47572000000200025Search in Google Scholar

Shukla, G. K., 1972: Genotype stability analysis and its application to potato regional trails. Crop Science, 11:184–190.10.2135/cropsci1971.0011183X001100020006xSearch in Google Scholar

Shutyaev, A. M., 1990: Basics forest seeds zoning. In: Veretennikov, A. V. (ed.): Increased productivity, sustainability and the protective role of forest ecosystems. Voronezh, Russia, p. 62–66. [in Russian].Search in Google Scholar

Shutyaev, A. M., Giertych, M., 1997: Height growth variation in a comprehensive Eurasian provenance experiment of (Pinus sylvestris L.). Silvae Genetica, 46:332–349.Search in Google Scholar

Shutyaev, A. M., Giertych, M., 2000: Genetic subdivisions of the range of Scots pine (Pinus sylvestris L.) based on a transcontinental provenance experiment. Silvae Genetica, 49:24–38.Search in Google Scholar

Suvanto, S., Nöjd, P., Henttonen, H. M., Beuker, E., Mäkinen, H., 2016: Geographical patterns in the radial growth response of Norway spruce provenances to climatic variation. Agricultural and Forest Meteorology, 222:10–20.10.1016/j.agrformet.2016.03.003Search in Google Scholar

Tarkhanov, S. N., 1998: Variability of spruce in the provenance tests of the Komi Republic. Ekaterinburg, 194 p. [in Russian].Search in Google Scholar

Wricke, G., 1962. Über eine Methods zur Erfassung der ökologisches Streubreite in Feldversuchen. Zeitschrift für Pflanzenzüchtung, 47:92–96.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo